68
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Normal modes of an incompressible and stratified fluid model including the vertical and horizontal components of coriolis force

&
Pages 368-384 | Received 28 Jul 2005, Accepted 26 Oct 2005, Published online: 15 Dec 2016

References

  • Anderson, E., Bai, Z., Bischof, C., Blackford, L. S., Demmel, J. and co-authors. 1999. LAPACK User’s Guide. 3rd Edition, SIAM, Philadelphia, PA.
  • D’Asaro, E. A., Ericksen, C. C., Levine, M. D., Niiler, P., Paulson, C. A. and Van Meurs, P. 1995. Upper-ocean inertial currents forced by a strong storm. Part I: Data and comparisons with linear theory. J. Phys. Oceanogr. 25, 2909–2936.
  • Durran, D. R. and Bretherton, C. 2004. Comments on “the roles of the horizontal component of the earth’s angular velocity in nonhydrostatic linear models.” J. Atmos. Sci. 61, 1982–1986.
  • Eckart, C. 1960. Hydrodynamics of Oceans and Atmospheres. Pergamon Press, 290 pp.
  • Fu, L.-L. 1981. Observations and models of inertial waves in the deep ocean. Rev. Geophys. Space Phys. 19, 141–170.
  • Garrett, C. and Munk, W. 1972. Space-time scales of internal waves. Geophys. Fluid Dyn. 3, 225–264.
  • Gill, A. E. 1982. Atmosphere-Ocean Dynamics. Academic Press, New York. 662 pp.
  • Gill, A. E. 1984. On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr 14, 1129–1151.
  • Kamenkovich, V. M. and Kulakov, A. V. 1977. Influence of rotation on waves in a stratified ocean. Oceanology 17, 260–266.
  • Kasahara, A. 2003a. The roles of the horizontal component of the Earth’s angular velocity in nonhydrostatic linear models. J. Atmos. Sci. 60, 1085–1095.
  • Kasahara, A. 2003b. On the nonhydrostatic atmospheric models with inclusion of the horizontal component of the Earth’s angular velocity. J. MeteoroL Soc. Japan 81, 935–950.
  • Kasahara, A. 2004. Reply. J. Atmos. Sci. 61, 1987–1991.
  • Klein, P. and Smith, S. L. 2001. Horizontal dispersion of near-inertial oscillations in a turbulent mesoscale eddy field. J. Marine Res. 59, 697–723.
  • Kroll, J. 1975. The propagation of wind-generated inertial oscillations from the surface into the deep ocean. J. Mar Res. 33, 15–51.
  • Kundu, P. K. and Thomson, R. E. 1985. Inertial oscillations due to a moving front. J. Phys. Oceanogr. 15, 1076–1084.
  • Miropol’sky, Yu Z. 2001. Dynamics of internal gravity waves in the ocean. Kluwer Academic Pub., Boston. 406 pp.
  • Munk, W. and Phillips, N. A. 1968. Coherence and band structure of inertial motions in the sea. Rev. Geophys. 6, 447–472.
  • Pollard, R. T. 1970. On the generation by winds of inertial waves in the ocean. Deep-Sea Res. 17, 795–812.
  • Simmons, A. J. and Temperton, C. 1997. Stability of a two-time-level semi-implicit integration scheme for gravity wave motion. Mon. Wea. Rev. 125, 600–615.
  • Stern, M. E. 1975. Ocean circulation physics. Academic Press, New York. 246 pp.
  • Thuburn, J., Wood, N. and Staniforth, A. 2002. Normal modes of deep atmospheres. II: f - F-plane geometry. Quart. J. Roy. Meteor Soc. 128, 1793–1806.
  • Tolstoy, I. 1973. Wave Propagation. McGraw-Hill, 466 pp.
  • Webster, F. 1968. Observations of inertial-period motions in the deep sea. Rev. Geophys. 6, 473–490.
  • Zervakis, V. and Levine, M. D. 1995. Near-inertial energy propagation from the mixed layer: Theoretical considerations. J. Phys. Oceanogr 25, 2872–2889.