1,883
Views
155
CrossRef citations to date
0
Altmetric
Original Articles

Tropical cyclone genesis potential index in climate models

, , &
Pages 428-443 | Received 30 Aug 2006, Accepted 29 Jan 2007, Published online: 15 Dec 2016

References

  • AMIP II (Atmospheric Model Intercomparison Project II), 2007. AMIP II Sea Surface Temperature and Sea Ice Concentration Observations. Available on line at http://www-pcmdi.11nl.gov/amip/AMIP2EXPDSNMCSOBS/amip2bcs.htm.
  • Anthes, R., Corell, R., Holland, G., Hurrell, J., MacCracken, M., and co-authors. 2006. Hurricanes and global warming-potential linkages and consequences. Bull. Amer Meteor. Soc. 87, 623-628.
  • Bengtsson, L. 2001. Hurricane threats. Science 293,440–441.
  • Bengtsson, L., Böttger, H. and Kanamitsu, M. 1982. Simulation of hurricane-type vortices in a general circulation model. Tellus 34, 440–457.
  • Bengtsson, L., Botzet, M. and Esch, M. 1995. Hurricane-type vortices in a general circulation model. Tellus 47A, 175–196.
  • Bengtsson, L., Botzet, M. and Esch, M. 1996. Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes?. Tellus 48A, 57–73.
  • Bengtsson, L., Hodges, K. I. and Roeckner, E. 2006. Storm tracks and climate change. J. Climate 19, 3518–3543.
  • Bister, M. and Emanuel, K. A. 1998. Dissipative heating and hurricane intensity. Meteor Atm. Phys. 52, 233–240.
  • Bister, M. and Emanuel, K. A. 2002a. Low frequency variability of tropical cyclone potential intensity, 1, interannual to interdecadal variability. J. Geophys. Res. 107, 4801, doi: 10.1029/2001JD000776.
  • Bister, M. and Emanuel, K. A. 2002b. Low frequency variability of tropical cyclone potential intensity, 2, climatology for 1982-1995. J. Geophys. Res. 107, 4621, doi: 10.1029/2001JDO00780.
  • Broccoli, A. J. and Manabe, S. 1990. Can existing climate models be used to study anthropogenic changes in tropical cyclone climate?. Geophys. Rev. Lett. 17, 1917–1920.
  • Camargo, S. J. and Sobel, A. H. 2004. Formation of tropical storms in an atmospheric general circulation model. Tellus 56A, 56–67.
  • Camargo, S. J. and Sobel, A. H. 2005. Western North Pacific tropical cyclone intensity and ENSO. J. Climate 18, 2996–3006.
  • Camargo, S. J. and Zebiak, S. E. 2002. Improving the detection and tracking of tropical storms in atmospheric general circulation models. Wea. Forecasting 17, 1152–1162.
  • Camargo, S. J., Barnston, A. G. and Zebiak, S. E. 2004. Properties of tropical cyclones in atmospheric general circulation models. IRI Technical Report 04-02,72 pp. International Research Institute for Climate Prediction, Palisades, NY.
  • Camargo, S. J., Barnston, A. G. and Zebiak, S. E. 2005. A statistical assessment of tropical cyclones in atmospheric general circulation models. Tellus 57A, 589–604.
  • Camargo, S. J., Emanuel, K. A. and Sobel, A. H. 2006. Genesis potential index and ENSO in reanalysis and AGCMs. In: Proc. of 27th Conference on Hurricanes and Tropical Meteorology, 15C.2, American Meteorological Society, Monterey, CA.
  • Camargo, S. J., Emanuel, K. A. and Sobel, A. H. 2007a. Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. IRI Technical Report 07-01,45 pp., International Research Institute for Climate Prediction, Palisades, NY; J. Climate, in press.
  • Camargo, S. J., Li, H. and Sun, L. 2007b. Feasibility study for downscaling seasonal tropical cyclone activity using the NCEP regional spectral model. Int. J. Clim. 27,311–325, doi: 10.1002/joc.1400. (Online first)
  • Chan, J. C. L. 2006. Comment on Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 311, 1713.
  • Chauvin, F., Royer, J.-F. and Deque, M. 2006. Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. Clim. Dyn. 27, 377–399, doi: 10.1007/s00382-006-0135-7.
  • Druyan, L. M., Lonergan, P. and Eichler, T. 1999. A GCM investigation of global warming impacts relevant to tropical cyclone genesis. Int. J. Climatol. 19, 607–617.
  • Emanuel, K. 2005a. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688, doi: 10.1038/nature03906.
  • Emanuel, K. 2005b. Emanuel replies. Nature 438, E13, doi: 10.1038/nature04427.
  • Emanuel, K. A. 1986. An air-sea interaction theory for tropical cyclones. Part I: steady-state maintenance. J. Atmos. Sc i. 43, 585–604.
  • Emanuel, K. A. 1995. Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sc i. 52, 3969–3976.
  • Emanuel, K. A. and Nolan, D. S. 2004. Tropical cyclone activity and global climate. In: Proc. of 26th Conference on Hurricanes and Tropical Meteorology, pp. 240-241, American Meteorological Society, Miami, FL.
  • Gray, W. M. 1979. Hurricanes: their formation, structure and likely role in the tropical circulation. In: Meteorology over the Tropical Oceans. pp. 155–218, Roy. Meteor. Soc.
  • Haarsma, R. J., Mitchell, J. F. B. and Senior, C. A. 1993. Tropical disturbances in a GCM. Clim. Dyn. 8, 247–257.
  • Hodges, K. I. 1994. A general method for tracking analysis and its application to meteorological data. Mon. Wea. Re v. 122, 2573–2586.
  • Hoyos, C. D., Agudelo, P. A., Webster, P. J. and Curry, J. A. 2006. Deconvolution of the factors contributing to the increase in global hurricane intensity. 312, 94-97, Science doi: 10.1126/science.1123560. WI, 2007.
  • IRI (International Research Institute for Climate and Society) Tropical Cyclone Activity Experimental Dynamical Forecasts. available on line at: http://iri.columbia.edufforecast/tc_fcst.
  • JTWC, 2007. JTWC (Joint Typhoon Warning Center) best track dataset. available online at https://metoc.npmoc.navy.mil/jtwc/best_tracks/.
  • JTWC, 2007. JTWC (Joint Typhoon Warning Center) best track dataset. available online at https://metoc.npmoc.navy.mil/jtwc/best_tracks/.
  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., and co-authors. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Amer Meteor. Soc. 77, 437-441.
  • Kiehl, J. T., Hack, J. J., Bonan, G. B., Boville, B. A., Williamson, D. L., and co-authors. 1998. The national center for atmospheric research community climate model: Ccm3. J. Climate 11, 1131-1149.
  • Knutson, T. R. and Tuleya, R. E. 2004. Impact of CO2-induced warming on simulated hurricane intensity and precipitation: sensitivity to choice of climate model and convective parametrizati on. J. Climate 17,3477–3495.
  • Landman, W. A., Seth, A. and Camargo, S. J. 2005. The effect of regional climate model domain choice on the simulation of tropical cyclone-like vortices in the southwestern indian ocean. J. Climate 18, 1263–1274.
  • Landsea, C. W. 2005. Hurricanes and global warming. Nature 438, El 1-13, doi: 10.1038/nature04477.
  • Manabe, S., Holloway, J. L. and Stone, H. M. 1970. Tropical circulation in a time-integration of a global model of the atmosphere. J. Atmos. Sc i. 27, 580–613.
  • Mann, M. E. and Emanuel, K. A. 2006. Atlantic hurricane trends linked to climate change. EOS 87, 233,238,241.
  • Matsuura, T., Yumoto, M., Iizuka, S. and Kawamura, R. 1999. Typhoon and ENSO simulation using a high-resolution coupled GCM. Geophys. Res. Lett. 26, 1755–1758.
  • Matsuura, T., Yumoto, M. and Iizulca, S. 2003. A mechanism of inter-decadal variability of tropical cyclone activity over the western North Pacific. Clim. Dyn. 21, 105–117.
  • McDonald, R. E., Bleaken, D. G., Cresswell, D. R., Pope, V. D. and Senior, C. A. 2005. Tropical storms: representation and diagnosis in climate models and the impacts of climate change. Clim. Dyn. 25, 19–36.
  • Model User Support Group, 1992. Echam3 - atmospheric general circulation model. Tech. Rep. 6, Das Deutshes Klimarechnenzentrum, Hamburg, Germany, 184 pp.
  • NHC, 2007. NHC (National Hurricane Center) best track dataset. available online at http://www.nhc.noaa.gov.
  • Nolan, D. S., Rappin, E. D. and Emanuel, K. A. 2006. Could hurricanes form from random convection in a warmer world?. In: Proc. of 27th Conference on Hurricanes and Tropical Meteorology, 1C.8, American Meteorological Society, Monterey, CA.
  • Oouchi, K., Yoshimura, J., Yoshimura, H., Mizuta, R., Kusunolci, S. and co-authors. 2006. Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor Soc. Japan 84, 259-276.
  • Pielke, R. Jr., Landsea, C., Mayfield, M., Laver, J. and Pasch, R. 2006. Reply to Hurricanes and global warming potential linkages and consequences. Bull. Amer. Meteor Soc. 87, 628–631.
  • Pielke, R. A. Jr. 2005. Are there trends in hurricane destruction?. Nature 438, Ell, doi: 10.1038/04426.
  • Pielke, R. A. Jr., Landsea, C., Mayfield, M., Laver, J. and Pasch, R. 2005. Hurricanes and global warming. Bull. Amer Meteor. Soc. 86, 1571–1575.
  • Reynolds, R. W. and Smith, T. M. 1994. Improved global sea surface temperature analyses using optimum interpolation. J. Climate 7, 929–948.
  • Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. and Wang, W. 2002. An improved in situ and satellite SST analysis for climate. J. Climate 15, 1609–1625.
  • Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M., and co-authors. 1996. The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Tech. Rep. 218, Max-Planck Institute for Meteorology, Hamburg, Germany, 90 pp.
  • Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M. and co-authors. 2003. The atmospheric general circulation model ECHAM5. Part I: Model description. Tech. Rep. 349, Max-Planck Institute for Meteorology, Hamburg, Germany, 127 pp.
  • Royer, J.-F., Chauvin, F., Timbal, B., Araspin, P. and Grimal, D. 1998. A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclone. Climatic Change 38, 307–343.
  • Ryan, B. F., Watterson, I. G. and Evans, J. L. 1992. Tropical cyclone frequencies inferred from Gray’s yearly genesis parameter: Validation of GCM tropical climate. Geophys. Res. Lett. 19, 1831–1834.
  • Suarez, M. J. and Takacs, L. L. 1995. Documentation of the Aries/GEOS dynamical core Version 2. Technical Report Series on Global Modelling and Data Assimilation, NASA Technical Memorandum 104606 Vol. 5, Goddard Space Flight Center, Greenbelt, MD, USA, 58 pp.
  • Sugi, M., Noda, A. and Sato, N. 2002. Influence of global warming on tropical cyclone climatology: An experiment with the .TMA global model. J. Meteor Soc. Japan 80, 249–272.
  • Thorncroft, C. and Pytharoulis, I. 2001. A dynamical approach to seasonal prediction of Atlantic tropical cyclone activity. Wea. Forecasting 16, 725–734.
  • Tsutsui, J. I. and Kasahara, A. 1996. Simulated tropical cyclones using the National Center for Atmospheric Research community climate model. J. Geophys. Res. 101, 15 013-15 032.
  • Vitart, E 2006. Seasonal forecasting of tropical storm frequency using a multi-model ensemble. Q. J. R. MeteoroL Soc. 132, 647–666, doi: 10.1256/qj.05.65.
  • Vitart, F. and Anderson, J. L. 2001. Sensitivity of Atlantic tropical storm frequency to ENSO and interdecadal variability of SSTs in an ensemble of AGCM integrations. J. Climate 14, 533–545.
  • Vitart, E Anderson, J. L. and Stern, W. F. 1997. Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations. J. Climate 10, 745-760.
  • Vitart, F., Anderson, J. L. and Stern, W. F. 1999. Impact of large-scale circulation on tropical storm frequency, intensity and location, simulated by an ensemble of GCM integrations. J. Climate 12, 3237–3254.
  • Vitart, F., Anderson, D. and Stockdale, T. 2003. Seasonal forecasting of tropical cyclone landfall over Mozambique. J. Climate 16,3932–3945.
  • Vitart, F. D. and Stockdale, T. N. 2001. Seasonal forecasting of tropical storms using coupled GCM integrations. Mon. Wea. Re v. 129, 2521–2537.
  • Walsh, K. 2004. Tropical cyclones and climate change: unresolved issues. Clim. Res. 27, 77–83.
  • Walsh, K. J., Fiorino, M., Landsea, C. W. and McInnes, K. L. 2007. Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, in press.
  • Walsh, K. J. E. and Ryan, B. E 2000. Tropical cyclone intensity increase near Australia as a result of climate change. J. Climate 13,3029–3036.
  • Walsh, K. J. E., Nguyen, K. C. and McGregor, J. L. 2004. Fine-resolution regional climate model simulations of the impact of climate change on tropical cyclones near Australia. Clim. Dyn. 22, 47–56.
  • Wang, B. and Chan, J. C. L. 2002. How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate 15, 1643–1658.
  • Watterson, I. G., Evans, J. L. and Ryan, B. F. 1995. Seasonal and interannual variability of tropical cyclogenesis: diagnostics from large-scale fields. J. Climate 8, 3052–3066.
  • Webster, P. J., Holland, G. J., Curry, J. A. and Chang, H.-R. 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309, 1844–1846, doi: 10.1126/science.1116448.
  • Wu, G. and Lau, N. C. 1992. A GCM simulation of the relationship between tropical storm formation and ENSO. Mon. Wea. Re v. 120, 958–977.
  • Yoshimura, J., Sugi, M. and Noda, A. 2006. Influence of greenhouse warming on tropical cyclone frequency. J. Meteor Soc. Japan 84, 405–428.
  • Yumoto, M., Matsuura, T. and Iizuka, S. 2003. Interdecadal variability of tropical cyclone frequency over the western North pacific in a high-resolution atmosphere-ocean coupled GCM. J. Meteor Soc. Japan 81, 1069–1086.