87
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Fine structure of a Greenland reverse tip jet: a numerical simulation

&
Pages 512-526 | Received 17 Dec 2007, Accepted 02 Mar 2009, Published online: 15 Dec 2016

References

  • Asselin, R. 1972. Frequency filter for time integrations. Mon. Wea. Rev. 100, 487–490.
  • Baines, P. G. 1987. Upstream blocking and airflow over mountains. Ann. Rev. Fluid Mech. 19, 75–97.
  • Barstad, I. and Gronhs, S. 2005. Southwesterly flows over southern Norway—Mososcale sensitivity to large-scale direction and speed. Tel-lus 57A, 136–152.
  • Barstad, I. and Gronas, S. 2006. Dynamical structures for southwesterly airflow over southern Norway: the role of dissipation. Tellus 58A, 2–18.
  • van den Broeke, M. R. and Gallee, H. 1990. Observation and simulation of barrier winds at the western margin of the Greenland ice sheet. Quart. J. Roy. Meteor. Soc. 122, 1365–1383.
  • Chen, W.-D. and Smith, R. B. 1987. Blocking and deflection of airflow by the Alps. Mon. Wea. Rev. 115, 2578–2597.
  • Cotton, W. R. and Anthes, R. A. 1989. Storm and Cloud Dynamics. Academic Press, San Diego, CA, 883 pp.
  • Doyle, J. D. and Shapiro, M. A. 1999. Flow response to large-scale topography: The Greenland tip jet. Tellus 51A, 728–748.
  • Endo, S., Shinoda, T., Tanaka, H.,Hiyama, T., Tsubolci, K., and co-authors. 2008. Characteristics of vertical circulation in the convective boundary layer over the Huaihe River Basin in China in the early summer of 2004. J. AppL Meteor Climatol. 47, 2911-2928.
  • Flamant, C., Drobinski, P.,Nance, L., Banta, R., Darby, L. and co-authors. 2002. Gap flow in an Alpine valley during a shallow south f6hn event: observations, numerical simulations and hydraulic ana-logue. Quart. J. Roy. Meteor Soc. 128, 1173-1210.
  • Gabergek, S. and Durran, D. R. 2004. Gap flows through idealized topography. Part I: forcing by large-scale winds in the nonrotating limit. J. Atmos. Sci. 61, 2846–2862.
  • Gabergek, S. and Durran, D. R. 2006. Gap flows through idealized topography. Part H: effects of rotation and surface friction. J. Atmos. Sci. 63, 2720–2739.
  • Gill, A. E. 1982. Atmosphere-Ocean Dynamics. Academic Press, San Diego, CA, 662 pp.
  • Godske, C. L., Bergeron, T., Bjerknes, J. and Bundgaard, R. C. 1957. Dynamic Meteorology and Weather Forecasting. American Meteorological Society, Boston, MA and Carnegie Institution of Washington, Washington, DC., 800 pp.
  • Grell, G. A., Dudhia, J. and Stauffer, D. R. 1995. NCAR Technical Note “A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5)”. NCAR, Boulder, CO, 122 pp.
  • Jackson, P. L. and Steyn, D. G. 1994a. Gap winds in a fjord. Part I: Observations and numerical simulation. Mon. Wea. Rev. 122, 2645-2665.
  • Jackson, P. L. and Steyn, D. G. 1994b. Gap winds in a fjord. Part 11: hydraulic analog. Mon. Wea. Rev. 122, 2666-2676.
  • Klemp, J. B. and Wilhelmson, R. B. 1978. The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci. 35, 1070–1096.
  • Lavender, K. L., Davis, R. E. and Owens, W. B. 2002. Observations of open-ocean deep convection in the Labrador Sea from subsurface floats. J. Phys. Oceanogr 32, 511–526.
  • Lilly, D. K. 1978. A severe downslope windstorm and aircraft turbulence event induced by a mountain wave. J. Atmos. Sci. 35, 59–77.
  • Liu, A. Q., Moore, G. W. K., Tsuboki, K. and Renfrew, I. A. 2004. A high-resolution simulation of convective roll clouds during a cold-air out-break. Geophys. Res. Lett. 31, L03101, 10.1029/2003GL018530.
  • Liu, A. Q., Moore, G. W. K., Tsuboki, K. and Renfrew, I. A. 2006. The effect of the sea-ice zone on the development of boundary-layer roll clouds during cold air outbreaks.Bound.-Layer Meteor 118, 557-581.
  • Maesalca, T., Moore, G. W. K., Liu, Q. and Tsuboki, K. 2006. A sim-ulation of a lake effect snowstorm with a cloud resolving numerical model. Geophys. Res. Lett. 33, L20813, 10.1029/2006GL026638.
  • Martin, R. and Moore, G. W. K. 2007. Air-sea interaction associated with a Greenland reverse tip jet. Geophys. Res. Lett. 34, L24802, 10.1029/2007GL031093.
  • Moore, G. W. K. 2003. Gale force winds over the Irminger Sea to the east of Cape Farewell, Greenland. Geophys. Res. Lett. 30, 1894, 10.1029/2003GL018012.
  • Moore, G. W. K. and Renfrew, I. A. 2005. Tip jets and barrier winds: a QuikSCAT climatology of high wind speed events around Greenland.J. Climate 18, 3713–3725 ( corrigendum is provided at 4919).
  • Moore, G. W. K., Pickart, R. S. and Renfrew, I. A. 2008. Buoy observations from the windiest location in the world ocean, Cape Farewell, Greenland. Geophys. Res. Lett. 35, L18802, 10.1029/2008GL034845.
  • O’Connor, W. P., Bromwich, D. H. and Carrasco, J. E 1994. Cyclonically forced barrier winds along the Transantarctic Mountains near Ross Island. Mon. Wea. Rev. 122, 137-150.
  • Ohigashi, T. and Tsuboki, K. 2007. Shift and intensification processes of the Japan-Sea Polar-Airmass Convergence Zone associated with the passage of a mid-tropospheric cold core. J. Meteor Soc. Japan 85, 633–662.
  • Pan, E and Smith, R. B. 1999. Gap winds and wakes: SAR observations and numerical simulations. J. Atmos. Sci. 56, 905–923.
  • Parish, T. R. 1982. Barrier winds along the Sierra Nevada Mountains. J. AppL Meteor 21, 925–930.
  • Picicart, R. S., Spall, M. A., Ribergaard, M. H., Moore, G. W. K. and Milliff, R. F. 2003. Deep convection in the Irminger Sea forced by the Greenland tip jet.Nature 424, 152-156.
  • Renfrew, I. A., Moore, G. W. K., Kristjánsson, J. E., Olafsson, H., Gray, S. L. and co-authors. 2008. The Greenland Flow Distortion experiment. Bull. Amer Meteor Soc. 89, 1307-1324.
  • Saito, K. 1993. A numerical study of the local downslope wind “Yamaji-lcaze” in Japan. Part 2: non-linear aspect of the 3-D flow over a mountain range with a col. J. Meteor Soc. Japan 71, 247–271.
  • Saito, K. and Ikawa, M. 1991. A numerical study of the local downslope wind “Yamaji-kaze” in Japan. J. Meteor Soc. Japan 69, 31–56.
  • Serreze, M. C., Carse, E, Barry, R. G. and Rogers, J. C. 1997. Icelandic low cyclone activity: climatological features, linkages with the NAO, and relationships with recent changes in the northern hemisphere circulation. J. Climate 10, 453–464.
  • Sharp, J. and Mass, C. 2002. Columbia Gorge gap flow. Bull. Amer Meteor Soc. 83, 1757–1762.
  • Skeie, P. and Gronhs, S. 2000. Strongly stratified easterly flows across Spitsbergen. Tellus 52A, 473–486.
  • Smith, R. B. 1982. Synoptic observations and theory of orographically wind and pressure. J. Atmos. Sci. 39, 60–70.
  • Steenburgh, W. J., Schultz, D. M. and Colle, B. A. 1998. The structure and evolution of gap outflow over the Gulf of Tehuantepec, Mexico.Mon. Wea. Rev. 126, 2673-2691.
  • Tsuboki, K. and Salcakibara, A. 2002. Large-scale parallel computing of cloud resolving storm simulator. High Performance Computing (eds. H. Zima et al). Springer-Verlag, Berlin-Heidelberg, 243–259.
  • Tsuboki, K. and Salcalcibara, A. 2007. Numerical Prediction of High-Impact Weather Systems —The Textbook for Seventeenth IHP Train-ing Course in 2007—. Hydrospheric Atmospheric Research Center, Nagoya, Japan, 281 pp.
  • Wang, C.-C., Chen, G. T.-J., Chen, T.-C. and Tsuboki, K. 2005. A numerical study on the effects of Taiwan topography on a convective line during the mei-yu season. Mon. Wea. Rev. 133, 3217–3242.
  • Yamada, H. 2008. Numerical simulations of the role of land surface con-ditions in the evolution and structure of summertime thunderstorms over a flat highland. Mon. Wea. Rev. 136, 173–188.
  • Yamada, H., Geng, B., Uyeda, H. and Tsuboki, K. 2007a. Role of the heated landmass on the evolution and duration of a heavy rain episode over a Meiyu-Baiu frontal zone. J. Meteor. Soc. Japan 85, 687-709.
  • Yamada, H., Geng, B., Uyeda, H. and Tsuboki, K. 2007b. Thermody-namic impact of the heated landmass on the nocturnal evolution of a cloud cluster over a Meiyu-Baiu front. J. Meteor Soc. Japan 85, 663-685.
  • Zhang, C.-Z., Uyeda, H., Yamada, H. and Geng, B. 2006. Characteris-tics of convections of medium depth to south of the meiyu front ana-lyzed by using numerical simulation.Sci. Online Lett. Atmos. 2, 160-163.