237
Views
49
CrossRef citations to date
0
Altmetric
Original Articles

A continuous buoyancy based convection scheme: one-and three-dimensional validation

Pages 687-706 | Received 20 Apr 2010, Accepted 28 Feb 2011, Published online: 15 Dec 2016

References

  • Arakawa, A. 2004. The cumulus parameterization problem: past, present and future. J. Clim. 17, 2493–2525.
  • Aralcawa, A. and Schubert, W. H. 1974. Interaction of a cumulus cloud ensemble with the large-scale environment: Part I. J. Atmos. Sci. 31, 674–701.
  • Bechtold, P., Redelsperger, J.-L., Beau, I., Blackburn, M., Brinkop, S. and co-authors. 2000. A GCSS model intercomparison for a tropical squall line observed during TOGA-COARE.intercomparison ofsingle-column models and a cloud-resolving model. Q. J. R. MeteoroL Soc. 126, 865-888.
  • Bechtold, P., Kiihler, M., Jung, T., Doblas-Reyes, F., Leutbecher, M. and co-authors. 2008. Advances in simulating atmospheric variability with the ECMWF model: from synoptic to decadal time-scales. Q. J. R. MeteoroL Soc. 134, 1337-1351.
  • Betts, A. K. and Miller, M. J. 1986. A new convective adjustment scheme. Part IL single-column tests using GATE wave, BOMEX, ASTEX, and arctic air-mass data sets. Q. J. R. MeteoroL Soc. 112, 693–709.
  • Bougeault, P. 1985. A simple parameterization of the large-scale effects of cumulus convection. Mon. Weather Rev. 113, 2108–2121.
  • Bretherton, C. S., Mc Coo, J. R. and Grenier, H. 2004. A new parameter-ization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: description and 1D results. Mon. Weather Rev. 132, 864–882.
  • Ceron, J.-P. and Gueremy, J.-F. 1999. Validation of the space-time vari-ability of African easterly waves simulated by the CNRM GCM. J. Clim. 12, 2831–2855.
  • Chen, D. H. and Bougeault, P. 1992. A simple prognostic closure as-sumption to deep convective parameterization: I. Acta Meteorologica Sinica 7, 1–18.
  • Cuxart, J., Bougeault, P. and Redelsperger, J. -L. 2000. A turbulence scheme allowing for mesoscale and large-eddy simulations. Q. J. R. MeteoroL Soc. 126, 1-30.
  • Donner, L. J. 1993. A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects. J. Atmos. Sci. 50, 889–906.
  • Emanuel, K. A. 1991. A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci. 48, 2313–2335.
  • Geleyn, J.-E, Bazile, E., Bougeault, R, Deque, M., Ivanovici, V. and co-authors. 1994. Atmospheric parametrisation schemes in Meteo-France’s ARPEGE N.W.P. model. ECMWF Seminar 94: Physical Parametrisations in Numerical Models, 385–402.
  • Gibelin, A.-L. and Deque, M. 2003. Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim. Dyn. 20, 327–339.
  • Gill, A. E. 1980. Some simple solutions for heat-induced tropical circu-lation. Q. J. R. MeteoroL Soc. 106,447–462.
  • Gregory, D. and Rowntree, P. R. 1990. A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Weather Rev. 118, 1483–1506.
  • Guichard, F., Retch, J. C., Redelsperger, J.-L., Bechtold, R, Chaboureau, J.-P. and co-authors. 2004. Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Q. J. R. MeteoroL Soc. 130, 3139-3172.
  • Huffman, G. J., Adler, R. F., Arkin, P., Chang, A., Ferraro, R. and co-authors. 1997. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset. Bull. Am. Meteorol. Soc. 78, 5-20.
  • Jorgensen, D. P., Le Mone, M. A. and Trier, S. B. 1997. Structure and evolution of the 22 February 1993 TOGA-COARE squall line: observations of precipitation, circulation, and surface energy fluxes. J. Atmoes. Sci. 54, 1961–1985.
  • Kain, J. S. and Fritsch, J. M. 1990. A one-dimensional entrain-ing/detraining plume model and its application in convective param-eterizations. J. Atmos. Sci. 47, 2784–2802.
  • Kershaw, R. and Gregory, D. 1997. Parameterization of momentum transport by convection - I: theory and cloud modelling results. Q. J. R. Meteorol. Soc. 123, 1133–1151.
  • Kessler, E. 1969. On the distribution and continuity of water substance in atmospheric circulations. Met. Mon. 10, American Met. Soc., 84 pp.
  • Kiehl, J. T. and Trenberth, K. E. 1997. Earth’s annual global mean energy budget. Bull. Am. MeteoroL Soc. 78, 197–208.
  • Liebmann, B. and Smith, C. A. 1996. Description of a complete (inter-polated) outgoing longwave radiation dataset. Bull. Am. Meteor Soc. 77, 1275–1277.
  • Lin, J.-N., Kiladis, G. N., Mapes, B. E., Weicicmann, K. M., Sperber, K. R. and co-authors. 2006. Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: convective Signals. J. Clim. 19, 2665-2690.
  • Liu, J. Y. and Orville, H. D. 1969. Numerical modeling of precipitation and cloud shadow effects on mountain-induced cumuli. J. Atmos. Sci. 26, 1283–1298.
  • Lopez, P. 2002. Implementation and validation of a new prognostic large-scale cloud and precipitation scheme for climate and data-assimilation purposes. Q. J. R. MeteoroL Soc. 128, 229–257.
  • Louis, J. F. 1979. A parametric model of vertical eddy fluxes in the atmosphere. Bound. Layer MeteoroL 17, 187–202.
  • Madec, G. 2008. “NEMO reference manual, ocean dynamics com-ponent: NEMO-OPA preliminary version”. Note du Pole de modelisation, Institut Pierre-Simon Laplace (IPSL), France, No 27 ISSN No 1288-1619.
  • Manabe, S., Smagorinsky, J. and Strickler, R. F. 1965. Simulated clima-tology of a general circulation model with a hydrological cycle. Mon. Weather Rev. 93, 769–798.
  • Matsuno, T. 1966. Quasi-geostrophic motions in the equatorial area. J. MeteoroL Soc. Japan 44, 25–43.
  • Morcrette, J.-J. 1990. Impact of changes to the radiation transfer param-eterizations plus cloud optical properties in the ECMWF model. Q. J. R. MeteoroL Soc. 111, 691–708.
  • Nitta, T. and Esbensen, S. 1974. Heat and moisture budget analyses using BOMEX data. Mon. Weather Rev. 102, 17–28.
  • Nordeng, T. E. 1994. Extended versions of the convective parametriza-tion scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. Technical Memorandum N. 206, ECMWF, Reading, UK.
  • Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T. and co-authors. 2007. Climate Models and Their Evaluation. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate.Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Redelsperger, J.-L., Brown, P. R. A., Guichard, F., Hoff, C., Kawasima, M. and co-authors. 2000. A GCSS model intercomparison for a trop-ical squall line observed during TOGA-COARE. I: Cloud-resolving models. Q. J. R. Meteorol. Soc. 126, 823-863.
  • Siebesma, A. P. and Cuijpers, J. W. M. 1995. Evaluation of paramet-ric assumptions for shallow cumulus convection. J. Atmos. Sci. 52, 650–666.
  • Siebesma, A. R, Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J. and co-authors. 2003. A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci. 60, 1201-1219.
  • Simpson, J. 1971. On cumulus entrainment and one-dimensional models. J. Atmos. Sci. 28, 449–455.
  • Simpson, J. and Wiggert, V. 1969. Models of precipitating cumulus towers. Mon. Weather Rev. 97,471–489.
  • Smith, R. N. B. 1990. A scheme for predicting layer clouds and their water content in a GCM. Q. J. R. MeteoroL Soc. 116,435–460.
  • Tiedtke, M. 1989. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Weather Rev. 117, 1779–1800.
  • Turner, J. S. 1963. The motion of buoyant elements in turbulent sur-roundings. J. Fluid Mech. 16, 1–16.
  • Uppala, S. M., KAllberg, P. W., Simmons, A. J., Andrae, U., Da Costa Bechtold, V. and co-authors. 2005. The ERA-40 re-analysis. Quart. J. R. MeteoroL Soc. 131, 2961-3012.
  • Wheeler, M. and Kiladis, G. N. 1999. Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber—frequency domain. J. Atmos. Sci. 56, 374–399.
  • Xie, P. and Arkin, P. 1996. Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Clim. 9, 840–858.
  • Xie, S., Xu, K.-M., Cederwall, R. T., Bechtold, R, Del Genio, A. D. and co-authors. 2002. Intercomparison and evaluation of cumulus param-eterizations under summertime midlatitude continental conditions. Q. J. R. MeteoroL Soc. 128, 1095-1136.
  • Yanai, M., Esbensen, S. and Chu, J. H. 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci. 30, 611–627.
  • Zhang, G. J. and McFarlane, N. A. 1995. Sensitivity of climate simula-tions to the parameterization of cumulus convection in the Canadian Center general circulation model. Atmos-Ocean 33, 407–446.