194
Views
66
CrossRef citations to date
0
Altmetric
Original Articles

Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air–sea gas transfer velocity

, , , &
Pages 390-417 | Received 13 Jan 2006, Accepted 11 Jul 2006, Published online: 18 Jan 2017

References

  • Andres, R. J., Marland, G., Fung, I. and Matthews, E. 1996. A 10 x10 dis-tribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950-1990. Global Biogeochem. Cycles 10 (3), 419–429.
  • Asher, W., Wang, Q., Monahan, E. C. and Smith, P.M. 1998. Estimation of air-sea gas transfer velocities from apparent microwave brightness temperature. Marine Tech. Soc. J. 32 (2), 32–40.
  • Aster, R. C., Borchers, B. and Thurber, C. H. 2005. Parameter Estimation and Inverse Problems, p. 301, Elsevier Academic Press, Amsterdam and Boston.
  • Aumont, O., On, J. C., Monfray, P., Ludwig, W., Amiotte-Suchet, P. and co-authors.2001. Riverine-driven interhemispheric transport of carbon. Global Biogeochem. Cycles 15 (2), 393–405.
  • Bacastow, R. B., Keeling, C. D., Lueker, T. J., Wahlen, M. and Mook, W. G. 1996. The C-13 Suess effect in the world surface oceans and its implications for oceanic uptake of CO2: analysis of observations at Bermuda. Global Biogeochem. Cycles 10 (2), 335–346.
  • Bates, N. R. 2002. Interannual variability in the global uptake of CO2. Geophys. Res. Lett. 29 (5), 1059, 10.1029/2001GL013571.
  • Battle, M., Bender, M. L., Tans, P. R, White, J. W. C., Ellis, J. T. and co-authors. 2000. Global carbon sinks and their variability inferred from atmospheric 02 and delta 13C. Science 287 (5462), 2467-2470.
  • Boutin, J. and Etcheto, J. 1996. Consistency of Geosat, SSM/I, and ERS-1 global surface wind speeds—comparison with in situ data. J. Atmos. Ocean. Technol. 13 (1), 183–197.
  • Boutin, J. and Etcheto, J. 1997. Long-term variability of the air-sea CO2 exchange coefficient: consequences for the CO2 fluxes in the equato-rial Pacific ocean. Global Biogeochem. Cycles 11 (3), 453–470.
  • Boyer, T. P., Stephens, C., Antonov, J. I., Conkright, M. E., Locranini, R. A. and co-authors.2002. World Ocean Atlas 2001, Volume 2: Salinity, p. 165, US Government Printing Office, Washington.
  • Braziunas, T. F., Fung, I. Y. and Stuiver, M. 1995. The preindustrial atmospheric 14CO2 latitudinal gradient as related to exchanges among atmospheric, oceanic, and terrestrial reservoirs. Global Biogeochem. Cycles 9 (4), 565–584.
  • Broecker, W., Gerard, R., Ewing, M. and Heezen, B. C. 1960. Natural radiocarbon in the Atlantic Ocean. J. Geophys. Res. 65 (9), 2903–2931.
  • Broecker, W. S., Ledwell, J. R., Takahashi, T., Weiss, R., Merlivat, L. and co-authors.1986. Isotopic versus micrometeorological ocean CO2 fluxes - a serious conflict. J. Geophys. Res. 91 (C9), 517-527.
  • Broecker, W. S. and Peng, T.-H. 1982. Tracers in the sea, p.690, Lamont-Doherty Geological Observatory, Palisades, NY.
  • Broecker, W. S., Peng, T. H., Ostlund, G. and Stuiver, M. 1985. The dis-tribution of bomb radiocarbon in the ocean. J. Geophys. Res. 90(C4), 6953–6970.
  • Broecker, W. S., Sutherland, S., Smethie, W., Peng, T. H. and Ostlund, G. 1995. Oceanic radiocarbon - Separation of the natural and bomb components. Global Biogeochem. Cycles 9 (2), 263–288.
  • Caldeira, K. and Wickett, M. E. 2003. Anthropogenic carbon and ocean pH. Nature 425 (6956), 365.
  • Caldeira, K., Rau, G. H. and Duffy, P. B. 1998. Predicted net efflux of radiocarbon from the ocean and increase in atmospheric radiocarbon content. Geophys. Res. Lett. 25 (20), 3811–3814.
  • Conway, T. J., Tans, P. P., Waterman, L. S., Thoning, K. W., Kitzis, D. R. and co-authors.1994. Evidence for interannual vari-ability of the carbon cycle from National Oceanic and Atmo-spheric Administration/Climate Monitoring and Diagnostics Labora-tory Global Air Sampling Network. J. Geophys. Res. 99 (D11), 23831-23 855.
  • Craig, H. 1957. The natural distribution of radiocarbon and the exchange time of carbon dioxide between the atmosphere and the sea. Tellus 9, 1–17.
  • Damon, P. E. and Sternberg, R. E. 1989. Global production and decay of radiocarbon. Radiocarbon 31 (3), 697–703.
  • Donelan, M. A., Haus, B. K., Reul, N., Plant, W. J., Stiassnie, M. and co-authors.2004. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett. 31 (18).
  • Druffel, E. M. and Suess, H. E. 1983. On the radiocarbon record in banded corals: exchange parameters and net transport of 14CO2 be-tween atmosphere and surface ocean. J. Geophys. Res.-Oceans Atm. 88(NC2), 1271-1280.
  • Druffel, E. R. M. 1987. Bomb radiocarbon in the Pacific: annual and seasonal timescale variations. J. Mar Res. 45, 667–698.
  • Druffel, E. R. M. 1989. Decade time scale variability of ventilation in the North Atlantic: high-precision measurements of bomb radiocarbon in banded corals. J. Geophys. Res. 94(C3), 3271–3285.
  • Druffel, E. R. M. and Griffin, S. 1995. Regional variability of surface ocean radiocarbon from southern great barrier reef corals. Radiocar-bon 37 (2), 517–524.
  • Dutay, J. C., Bullister, J. L., Doney, S. C., On, J. C., Najjar, R. and co-authors.2002. Evaluation of ocean model ventilation with CFC-11: comparison of 13 global ocean models. Ocean Modelling 4 (2), 89–120.
  • England, M. H., Garcon, V. and Minster, J. F. 1994. Chlorofluorocarbon uptake in a world ocean model 1. Sensitivity to the surface gas forcing. J. Geophys. Res. 99(C12), 25 215-25 233.
  • Esbensen, S. K. and Kushnir, Y. 1981. The heat budget of the global ocean: an Atlas based on estimates from marine surface observations. Oregon State University, Corvallis, Oregon.
  • Fairall, C. W., Hare, J. E., Edson, J. B. and McGillis, W. 2000. Parameter-ization and micrometeorological measurement of air-sea gas transfer. Boundary-Layer Meteorology 96(1-2), 63–105.
  • Fasham, M. J. R. 2003. Ocean Biogeochemistry: The Role of the Ocean Carbon Cycle in Global Change, pp. 297, Springer, Berlin, New York.
  • Feely, R. A., Wanninkhof, R., Takahashi, T. and Tans, P. 1999. Influence of El Niiio on the equatorial Pacific contribution to atmospheric CO2 accumulation. Nature 398 (6728), 597–601.
  • Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J. and co-authors. 2004a. Impact of anthropogenic CO2 on the CaCO3 sys-tem in the oceans. Science305 (5682), 362–366.
  • Feely, R. A., Wanninkhof, R., McGillis, W., Can, M. E. and Cosca, C. E. 2004b. Effects of wind speed and gas exchange parameterizations on the air-sea CO2 fluxes in the equatorial Pacific Ocean. J. Geophys. Res. 109(C8), C08503, 10.1029/2003JC001896.
  • Francey, R. J., Allison, C. E., Etheridge, D. M., Trudinger, C. M., Enting, I. G. and co-authors.1999. A 1000-year high precision record of 313C in atmospheric CO2. Tellus 51B, 170–193.
  • Francey, R. J., Allison, C. E., Trudinger, C. M., Rayner, P. J., Enting, I. G. and co-authors.2001. The interannual variation in global at-mospheric delta” C and its link to net terrestrial exchange. In: Sixth International Carbon Dioxide Conference, Extended Abstracts, Orga-nizing Committee of Sixth International Carbon Dioxide Conference, Sendai, Japan, pp. 43–46.
  • Frank, N., Paterne, M., Ayliffe, L., van Weering, T., Henriet, J. P. and co-authors.2004. Eastern North Atlantic deep-sea corals: tracing upper intermediate water Delta C-14 during the Holocene. Earth Planet. Sci. Lett. 219(3-4), 297–309.
  • Frew, N. M., Bock, E. J., Schimpf, U., Hara, T., Haussecker, H. and co-authors.2004. Air-sea gas transfer: its dependence on wind stress, small-scale roughness, and surface films. J. Geophys. Res. 109 (C8), CO8S17.
  • Frost, T. and Upstill-Goddard, R. C. 1999. Air-sea gas exchange into the millennium: progress and uncertainties. In: Oceanog. Mar Biol. 37, 1–45.
  • Garabetian, E 1991. 14C-glucose uptake and 14C-0O2 production in surface microlayer and surface-water samples: influence of UV and visible radiation. Mar EcoL Prog. Series 77 (1), 21–26.
  • Gloor, M., Gruber, N., Hughes, T. M. C. and Sarmiento, J. L. 2001. Estimating net air-sea fluxes from ocean bulk data: methodology and application to the heat cycle. Global Biogeochem. Cycles 15 (4), 767–782.
  • Gloor, M., Gruber, N., Sarmiento, J., Sabine, C. L., Feely, R. A. and co-authors.2003. A first estimate of present and preindustrial air-sea CO2 flux patterns based on ocean interior carbon measurements and models. Geophys. Res. Lett. 30 (1), 1010.
  • Goldstein, S. J., Lea, D. W., Chalcraborty, S., Kashgarian, M. and Murrell, M. T. 2001. Uranium-series and radiocarbon geochronol-ogy of deep-sea corals: implications for Southern Ocean ventilation rates and the oceanic carbon cycle. Earth Planet. Sci. Lett. 193(1-2), 167–182.
  • Goslar, T. 2001. Absolute production of radiocarbon and the long-term trend of atmospheric radiocarbon. Radiocarbon 43(2B), 743–749.
  • Gruber, N. and Keeling, C. D. 2001. An improved estimate of the isotopic air-sea disequilibrium of CO2: implications for the oceanic uptake of anthropogenic CO2. Geophys. Res. Lett. 28 (3), 555–558.
  • Gruber, N., Sarmiento, J. L. and Stocker, T. E 1996. An improved method for detecting anthropogenic CO2 in the oceans. Global Biogeochem. Cycles 10 (4), 809–837.
  • Gruber, N., Keeling, C. D., Bacastow, R. B., Guenther, P. R., Lueker, T. J. and co-authors.1999. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect. Global Bio-geochem. Cycles 13 (2), 307–335.
  • Gruber, N., Gloor, M., Fan, S. M. and Sarmiento, J. L. 2001. Air-sea flux of oxygen estimated from bulk data: implications for the marine and atmospheric oxygen cycles. Global Biogeochem. Cycles 15 (4), 783–803.
  • Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D. and co-authors.2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415 (6872), 626–630.
  • Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D. and co-authors.2003. TransCom 3 CO2 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information. Tellus 55B, 555–579.
  • Heimann, M. and Maier-Reimer, E. 1996. On the relations between the oceanic uptake of CO2 and its carbon isotopes. Global Biogeochem. Cycles 10 (1), 89–110.
  • Heimann, M. and Monfray, P. 1989. Spatial and Temporal Variation of the Gas Exchange Coefficient for CO2: 1. Data Analysis and Global Validation, pp. 29, Max-Planck-Institut fiir Meteorologie, Hamburg, Germany.
  • Hesshaimer, V., Heimann, M. and Levin, I. 1994. Radiocarbon evidence for a smaller oceanic carbon-dioxide sink than previously believed. Nature 370 (6486), 201–203.
  • Hogg, A. G., McCormac, F. G., Higham, T. F. G., Reimer, P. J., Baillie, M. G. L. and co-authors.2002. High-precision radiocarbon measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand: AD 1850-950. Radiocarbon 44 (3), 633–640.
  • Hua, Q. and Barbetti, M. 2004. Review of tropospheric bomb 1-4C data for carbon cycle modeling and age calibration purposes. Raliocarbon 46 (3), 1273–1298.
  • Hua, Q., Barbetti, M., Worbes, M., Head, J. and Levchenko, V. A. 1999. Review of radiocarbon data from atmospheric and tree ring samples for the period 1945-1997 AD. lawa J. 20 (3), 261–283.
  • Ito, T., Marshall, J. and Follows, M. 2004. What controls the uptake of transient tracers in the Southern Ocean? Global Biogeochem. Cycles 18 (2).
  • Jähne, B. and Haussecker, H. 1998. Air-water gas exchange. Annu. Rev. Fluid Mech. 30,443–468.
  • Joos, F. 1996. An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake. Tel-lus, Series B. 48 (3), 397–417.
  • Joos, F. and Bruno, M. 1998. Long-term variability of the terrestrial and oceanic carbon sinks and the budgets of the carbon isotopes C-13 and C-14. Global Biogeochem. Cycles 12 (2), 277–295.
  • Milberg, R, Simmons, A., Uppala, S. and Fuentes, M. 2004. The ERA-40 Archive. pp. 31, European Centre for Medium Range Weather Forecasts, Shinfield Park, England.
  • Keeling, C. D., Bacastow, R. B., Bainbridge, A. E., Ekdahl, C. A., Guenther, P. R. and co-authors.1976. Atmospheric carbon-dioxide variations at Mauna-Loa Observatory, Hawaii. Tellus 28, 538–551.
  • Keeling, C. D., Whorf, T. P., Wahlen, M. and Vanderplicht, J. 1995. Interannual extremes in the rate of rise of atmospheric carbon-dioxide since 1980. Nature 375 (6533), 666–670.
  • Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninlchof, R. and co-authors.2004. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Global Biogeochem. Cycles 18 (4), GB4031.
  • Key, R. M., Quay, P. D., Schlosser, R, McNichol, A. P., von Reden, K. F. and co-authors.2002. WOCE radiocarbon IV: Pacific Ocean results; P10, P 13N, P 14C, P18, P19 & 54P. Radiocarbon 44 (1), 239–392.
  • Komori, S., Nagaosa, R. and Muralcami, Y. 1993. Turbulence structure and mass-transfer across a sheared air-water interface in wind-driven turbulence. J. Fluid Mech. 249, 161–183.
  • Krakauer, N. Y., Schneider, T., Randerson, J. T. and Olsen, S. C. 2004. Using generalized cross-validation to select parameters in inversions for regional carbon fluxes. Geophys. Res. Lett. 31 (19), 10.1029/2004020323.
  • Levin, I. and Hesshaimer, V. 2000. Radiocarbon - A unique tracer of global carbon cycle dynamics. Radiocarbon 42 (1), 69–80.
  • Levin, I. and Kromer, B. 2004. The Tropospheric 1-4CO2 level in Mid-Latitudes of the Northern Hemisphere (1959-2003). Radiocarbon 46 (3), 1261-1272.
  • Levin, I., Kromer, B., Schmidt, M. and Sartorius, H. 2003. A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14uu --2 observations. Geophys. Res. Lett. 30 (23), art. no. 2194.
  • Levin, I., Kromer, B., Wagenbach, D. and Miinnich, K. 0. 1987. Car-bon isotope measurements of atmospheric CO2 at a coastal station in Antarctica. Tellus 39B, 89–95.
  • Lingenfelter, R. E. 1963. Production of carbon-14 by cosmic-ray neu-trons. Reviews of Geophysics 1 (1), 35–55.
  • Linick, T. W. 1980. Bomb-produced C-14 in the surface-water of the Pacific Ocean. Radiocarbon 22 (3), 599–606.
  • Liss, P. S. and Merlivat, L. 1986. Air-sea gas exchange rates: introduc-tion and synthesis. In: The Role of Air-Sea Exchange in Geochemical Cycling (ed. P. Buat-Menard), D. Reidel, Dordrecht, pp. 113–129.
  • Liss, P. S., Chuck, A. L., Turner, S. M. and Watson, A. J. 2004. Air-sea gas exchange in Antarctic waters. Antarctic Sci. 16 (4), 517–529.
  • Mahowald, N. M., Rasch, P. J., Eaton, B. E., Whittlestone, S. and Prinn, R. G. 1997. Transport of 222radon to the remote troposphere using the Model of Atmospheric Transport and Chemistry and assimilated winds from ECMWF and the National Center for Environmental Pre-diction/NCAR. J. Geophys. Res. 102(D23), 28 139-28 151.
  • Manning, M. R., Lowe, D. C., Melhuish, W. H., Sparks, R. J., Wallace, G. and co-authors.1990. The use of radiocarbon measurements in atmospheric studies. Radiocarbon 32 (1), 37–58.
  • Marland, G., Boden, T. A. and Andres, R. J. 2005. Global, regional, and national fossil fuel CO2 emissions. In: Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, http://cdiac.esd.ornigov/trends/trends.htm.
  • Marshall, J., Adcroft, A., Hill, C., Perelman, L. and Heisey, C. 1997. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. 102(C3), 5753–5766.
  • Masiello, C. A., Druffel, E. R. M. and Bauer, J. E. 1998. Physical con-trols on dissolved inorganic radiocarbon variability in the California Current. Deep-Sea Res. 45(4-5), 617–642.
  • McGillis, W. R., Edson, J. B., Hare, J. E. and Fairall, C. W. 2001. Direct covariance air-sea CO2 fluxes. J. Geophys. Res. 106 (C8), 16 729–16745.
  • McGillis, W. R., Edson, J. B., Zappa, C. J., Ware, J. D., McKenna, S. P. and co-authors.2004. Air-sea CO2 exchange in the equatorial Pacific. J. Geophys. Res. 109 (C8), C08502, 10.1029/2003JC002256.
  • McNeil, B. I., Matear, R. J., Key, R. M., Bullister, J. L. and Sarmiento, J. L. 2003. Anthropogenic CO2 uptake by the ocean based on the global chlorofluorocarbon data set. Science 299 (5604), 235-239.
  • Milcaloff Fletcher, S. E., Gruber, N., Jacobson, A. R., Doney, S. C., Dutkiewcz, S. and co-authors. 2006. Inverse estimates of anthro-pogenic CO2 uptake, transport, and storage by the ocean. Global Biogeochem. Cycles 20, GB2002, 10.1029/2005GB002530.
  • Monahan, E. C. 2002. Oceanic whitecaps: sea surface features detectable via satellite that are indicators of the magnitude of the air-sea gas transfer coefficient. Proc. Indian Acad. Sci.-Earth Planet. Sci 111(3), 315–319.
  • Murnane, R. J., Sarmiento, J. L. and Le Quere, C. 1999. Spatial distribution of air-sea CO2 fluxes and the interhemispheric transport of carbon by the oceans. Global Biogeochem. Cycles 13(2), 287-305.
  • Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S. and co-authors. 2000. In situ evaluation of air-sea gas exchange pa-rameterizations using novel conservative and volatile tracers. Global Biogeochem. Cycles 14(1), 373–387.
  • Nydal, R. 2000. Radiocarbon in the ocean. Radiocarbon 42(1), 81-98.
  • Olsen, A., Wanninkhof,R., Trinanes, J. A. and Johannessen, T. 2005. The effect of wind speed products and wind speed-gas exchange re-lationships on interannual variability of the air-sea CO2 gas transfer velocity. Tellus 57B, 95–106.
  • Olsen, S. C. and Randerson, J. T. 2004. Differences between surface and column atmospheric CO2 and implications for carbon cycle research. J. Geophys. Res. 109, D02301, 10.1029/2003JD003968.
  • On, J. C., Maier-Reimer, E., Mikolajewicz, U., Monfray, P., Sarmiento, J. L. and co-authors.2001. Estimates of anthropogenic carbon up-take from four three- dimensional global ocean models. Global Bio-geochem. Cycles 15(1), 43–60.
  • On, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C. and co-authors.2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437 (7059), 681–686.
  • Ostlund, H. G. and Stuiver, M. 1980. Geosecs Pacific radiocarbon. Ra-diocarbon 22(1), 25–53.
  • Pacanowski, R. C., Dixon, K. and Rosati, A. 1993. The GFDL mod-ular ocean model users guide. p. 46, Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey.
  • Parker, R. L. and McNutt, M. K. 1980. Statistics for the one-norm misfit measure. J. Geophys. Res. 85, 4429–4430.
  • Peacock, S. 2004. Debate over the ocean bomb radiocarbon sink: closing the gap. Global Biogeochem. Cycles 18, GB2022.
  • Peacock, S., Maltrud, M. and Bleck, R. 2005. Putting models to the data test: a case study using Indian Ocean CFC-11 data. Ocean Modelling 9(1), 1–22.
  • Peng, T. H., Broecker, W. S., Mathieu, G. G. and Li, Y. H. 1979. Radon evasion rates in the Atlantic and Pacific Oceans as determined dur-ing the Geosecs Program. J. Geophys. Res.-Oceans Atmos. 84(NC5), 2471-2486.
  • Perrie, W., Zhang, W. Q., Ren, X. J., Long, Z. X. and Hare, J. 2004. The role of midlatitude storms on air-sea exchange of CO2. Geophys. Res. Lett. 31(9) L09306, 10.1029/2003GL019212.
  • Plattner, G. K., Joos, E and Stocker, T. F.2002. Revision of the global carbon budget due to changing air-sea oxygen fluxes. Global Bio-geochem. Cycles 16(4), art. no. 1096, 10.1029/2001GB001746.
  • Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M. and co-authors.1993. Terrestrial ecosystem production - a process model based on global satellite and surface data. Global Biogeochem. Cycles 7 (4), 811–841.
  • Prentice, I. C., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L., Heimann, M. and co-authors.2001. The carbon cycle and atmospheric carbon dioxide. In: Climate Change 2001 : The Scientific Basis : Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds.J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Da, K. Maskell and C. A. Johnson), Cambridge University Press, Cambridge, U.K. and New York, pp. 183–238.
  • Primeau, F. 2005. Characterizing transport between the surface mixed layer and the ocean interior with a forward and adjoint global ocean transport model. J. Phys. Oceanogr 35(4), 545–564.
  • Quay, R, King, S., White, D., Brockington, M., Plotkin, B. and co-authors.2000. Atmospheric 14C0: a tracer of OH concentration and mixing rates. J. Geophys. Res. 105(012), 15 147-15 166.
  • Quay, P., Sonnerup, R., Westby, T., Stutsman, J. and McNichol, A. 2003. Changes in the 13012C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake. Global Biogeochem. Cycles 17(1), art. no. 1004, 10.1029/2001GB001817.
  • Randerson, J. T., Enting, I. G., Schuur, E. A. G., Caldeira, K. and Fung, I. Y. 2002. Seasonal and latitudinal variability of troposphere A14CO2: post bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere. Global Biogeochem. Cycles 16(4), art. no. 1112, 10.1029/2002GB001876.
  • Roy, T., Rayner, P., Matear, R. and Francey, R. 2003. Southern hemi-sphere ocean CO2 uptake: reconciling atmospheric and oceanic esti-mates. Tellus 55B, 701–710.
  • Rozanslci, K., Levin, I., Stock, J., Falcon, R. E G. and Rubio, E 1995. Atmospheric 14CO2 variations in the Equatorial region. Radiocarbon 37(2), 509–515.
  • Rubin, S. I. and Key, R. M. 2002. Separating natural and bomb-produced radiocarbon in the ocean: the potential alkalinity method. Global Bio-geochem. Cycles 16(4), 1105.
  • Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K. and co-authors.2004. The oceanic sink for anthropogenic CO2. Science 305 (5682), 367–371.
  • Schlitzer, R. 2000. Applying the adjoint method for biogeochemical modeling: export of particulate organic matter in the world ocean. In: Inverse Methods in Global Biogeochemical Cycles (eds. Kasibhatla, P., Heimann, M., Rayner, P., Mahowald, N., Prinn, R. G. and Hartley, D. E.), American Geophysical Union, Washington, pp. 107-124.
  • Stammer, D., Ueyoshi, K., Kohl, A., Large, W. G., Josey, S. A. and co-authors. 2004. Estimating air-sea fluxes of heat, freshwater, and momentum through global ocean data assimilation. J. Geophys. Res. 109, C05023, 10.1029/2003JC002082.
  • Stephens, C., Antonov, J. I., Conkright, M. E., Locranini, R. A., O'Brien, T. D. and co-authors.2002. World Ocean Atlas 2001, Volume]: Tem-perature, p. 167, US Government Printing Office, Washington. Stuiver, M. and Becker, B. 1993. High-precision decadal calibration of the radiocarbon time scale, AD 1950-6000 BC. Radiocarbon 35(1), 35–65.
  • Stuiver, M. and Ostlund, H. G. 1980. Geosecs Atlantic radiocarbon. Radiocarbon 22(1), 1–24.
  • Stuiver, M. and Ostlund, H. G. 1983. Geosecs Indian-Ocean and Mediter-ranean radiocarbon. Radiocarbon 25(1), 1–29.
  • Stuiver, M. and Polach, H. A. 1977. Reporting of C-14 data—discussion. Radiocarbon 19 (3), 355–363.
  • Stuiver, M. and Quay, P. D. 1981. Atmospheric 14C changes resulting from fossil fuel CO2 release and cosmic ray flux variability. Earth Planet. Sci. Lett. 53 (3), 349–362.
  • Suess, H. E. 1955. Radiocarbon concentration in modern wood. Science 122 (3166), 415–417.
  • Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N. and co-authors. 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res. 49(9–10), 1601-1622.
  • Tang, W. and Liu, W. T. 1996. Equivalent Neutral Wind. pp. 20, JPL Publication 96-17, Pasadena.
  • Tans, P. P., Berry, J. A. and Keeling, R. E 1993. Oceanic 13012c ob-servations: a new window on ocean CO2 uptake. Global Biogeochem. Cycles 7 (2), 353–368.
  • Tans, P. P., Dejong, A. E M. and Mook, W. G. 1979. Natural atmo-spheric C-14 variation and the Suess Effect. Nature 280 (5725), 826–827.
  • Tans, P. P., Fung, I. Y. and Takahashi, T. 1990. Observational constraints on the global atmospheric CO2 Budget. Science 247 (4949), 1431–1438.
  • Thompson, M. V. and Randerson, J. T. 1999. Impulse response func-tions of terrestrial carbon cycle models: method and application. Glob. Change Biol. 5 (4), 371–394.
  • Toggweiler, J. R., Dixon, K. and Bryan, K. 1989. Simulations of radiocarbon in a coarse-resolution world ocean model .1. Steady state prebomb distributions. J. Geophys. Res. 94(C6), 8217–8242.
  • Trolier, M., White, J. W. C., Tans, P. R, Masarie, K. A. and Gemery, P. A. 1996. Monitoring the isotopic composition of atmospheric CO2: mea-surements from the NOAA Global Air Sampling Network. J. Geophys. Res. 101(D20), 25 897-25 916.
  • Turney, D. E., Smith, W. C. and Banerjee, S. 2005. A measure of near-surface fluid motions that predicts air-water gas transfer in a wide range of conditions. Geophys. Res. Lett. 32 (4).
  • Van Scoy, K. A., Morris, K. R, Robertson, J. E. and Watson, A. J. 1995. Thermal skin effect and the air-sea flux of carbon dioxide: a seasonal high-resolution estimate. Global Biogeochem. Cycles 9 (2), 253–262.
  • Vogel, J. C. 1971. Pretoria radiocarbon dates I. Radiocarbon 13 (2), 378–394.
  • Walsh, J. 1978. A data set on northern hemisphere sea ice extent, 1953-1976. pp. 49-51, World Data Center for Glaciology (Snow and Ice), Report GD-2,.
  • Wanninlchof, R. 1992. Relationship between wind-speed and gas-exchange over the ocean. J. Geophys. Res. 97(C5), 7373–7382.
  • Wanninlchof, R. and McGillis, W. R. 1999. A cubic relationship between air-sea CO2 exchange and wind speed. Geophys. Res. Lett. 26 (13), 1889–1892.
  • Wanninlchof, R., Sullivan, K. F. and Top, Z. 2004. Air-sea gas trans-fer in the Southern Ocean. J. Geophys. Res. 109(C8) C08519, 10.1029/2003JC001767.
  • Ward, B., Wanninlchof, R., McGillis, W. R., Jessup, A. T., DeGrandpre, M. D. and co-authors.2004. Biases in the air-sea flux of CO2 resulting from ocean surface temperature gradients. J. Geophys. Res. 109(C8) C08508, 10.1029/2003JC001800.
  • Weiss, R. E 1974. Carbon dioxide in water and seawater: solubility of a non-ideal gas. Mar Chem. 2, 203–215.
  • Weiss, R. F. and Price, B. A. 1980. Nitrous oxide solubility in water and seawater. Mar Chem. 8 (4), 347–359.
  • Woolf, D. K. 2005. Parametrization of gas transfer velocities and sea-state-dependent wave breaking. Tellus 57B, 87–94.
  • Zhang, J., Quay, P. D. and Wilbur, D. 0. 1995. Carbon isotope fraction-ation during gas-water exchange and dissolution of CO2. Geochim. Cosmochim. Acta 59 (1), 107–114.
  • Zhao, D., Toba, Y., Suzuki, Y. and Komori, S. 2003. Effect of wind waves on air-sea gas exchange: proposal of an overall CO2 transfer velocity formula as a function of breaking-wave parameter. Tellus 55B, 478–487.
  • Zwally, H. J., Comiso, J., Parkinson, C., Campbell, W., Carsey, F. and co-authors.1983. Antarctic Sea Ice, 1973-1976: satellite passive mi-crowave observations, pp. 206, NASA.