336
Views
103
CrossRef citations to date
0
Altmetric
Original Articles

Spatial variation in plant community functions regulates carbon gas dynamics in a boreal fen ecosystem

, , , , , , , & show all
Pages 838-852 | Received 11 Oct 2006, Accepted 25 Jun 2007, Published online: 18 Jan 2017

Reference

  • Ahti, T., Hämet-Ahti, L. and Jalas, J. 1968. Vegetation zones and their sections in northwestern Europe. Ann. BoL Fenn. 5, 169–211.
  • Alm, J., Saamio, S., Nykänen, H., Silvola, J. and Martikainen, P. J. 1999. Winter CO2, CH4 and N20 fluxes on some natural and drained boreal peatlands, Biogeochemistiy 44, 163–186.
  • Alm, J., Talanov, A., Saamio, S., Silvola, J., Ikkonen, E. and co-authors. 1997. Reconstruction of the carbon balance for microsites in a boreal oligotrophic pine fen, Finland. Oecologia 110,423–431.
  • Aurela, M., Laurila, T. and Tuovinen, J. P. 2002. Annual CO2 balance of a subarctic fen in northern Europe: importance of the wintertime efflux. J. Geophys. Res. — Atmos. 107,4607, doi:10.1029/2002JD002055.
  • Aurela, M., Laurila, T. and Tuovinen, J. P. 2004. The timing of snow melt controls the annual CO2 balance in a subarctic fen. Geophys. Res. Lett. 31, L16119, doi:10.1029/2004GL020315.
  • Aurela, M., Riutta, T., Laurila, T., Tuovinen, J.-P., Vesala, T. and co-authors. 2007. CO2 exchange of a sedge fen in southern Finland — the impact of a drought period. Tellus 59B, doi:10.1111/j.1600-0889.2007.00309.x.
  • Bubier, J. L., Frolking, S., Crill, P. M. and Linder, E. 1999. Net ecosystem productivity and its uncertainty in a diverse boreal peatland. J. Geophys. Res. Atmos. 104, 27683–27692.
  • Bubier, J. L., Moore, T. R. and Roulet, N. T. 1993. Methane emissions from wetlands in the Midboreal Region of Northern Ontario, Canada. Ecology 74, 2240–2254.
  • Chanton, J., Bauer, J., Glaser, P., Siegel, D., Kelley, C. and co-authors. 1995. Radiocarbon evidence for the substrates supporting methane formation within northern Minnesota peatlands. Geochim. Cosmochim. Acta 59, 3663-3668.
  • Couwenberg, J. and Joosten, H. 2005. Self-organization in raised bog patterning: the origin of microtope zonation and mesotope diversity. J. Ecol. 93, 1238–1248.
  • Ding, W. X., Cai, Z. C. and Tsuruta, H. 2004. Methane concentration and emission as affected by methane transport capacity of plants in freshwater marsh. Water Air Soil Pollut. 158, 99–111.
  • Drebs, A., Nordlund, A., Karlsson, P., Helminen, J. and Rissanen, P. 2002. Climatological statistics of Finland 1971-2000. Clim. Stat. Finland 1, 1–99.
  • Gorham, E. 1991. Northern Peatlands — role in the carbon-cycle and probable responses to climatic warming. Ecol. AppL 1, 182–195.
  • Griffis, T. J., Rouse, W. R. and Waddington, J. M. 2000. Interannual variability of net ecosystem CO2 exchange at a subarctic fen. Global Biogeochem. Cycles 14, 1109–1121.
  • Hargreaves, K. J., Fowler, D., Pitcairn, C. E. R. and Aurela, M. 2001. Annual methane emission from Finnish mire estimated from eddy covariance campaign measurements. Theor. Appl. Climatol. 70, 202–213.
  • Hämet-Ahti, L., Suominen, J., Ulvinen, T. and Uotila, P. (eds) 1998. Retkeilykasvio. 4th Edition. Yliopistopaino, Helsinki. (In Finnish).
  • Heikkinen, J. E. P., Elsakov, V. and Martikainen, P. J. 2002a. Carbon dioxide and methane dynamics and annual carbon balance in tundra wetland in NE Europe, Russia. Global Biogeochem. Cycles 16, 1115, doi:10.1029/2002GB001930.
  • Heikkinen, J. E. P., Maljanen, M., Aurela, M., Hargreaves, K. and Martikainen, P. J. 2002b. Carbon dioxide and methane dynamics in a sub-Arctic peatland in northern Finland. Polar Res. 21, 49–62.
  • Heikkinen, J. E. P., Virtanen, T., Huttunen, J. T., Elsakov, V. and Martikainen, P. J. 2004. Carbon balance in East European tundra. Global Biogeochem. Cycles 18, GB1023, doi:10.1029/2003GB002054.
  • Hill, M. O. 1979. 7'WINSPAN — A FORTRAN Program for Arranging Multivariate Data in an Ordered Two-way Table by Classification of the Individuals and Attributes. Ecology and Systematics, Cornell University, Ithaca, New York.
  • Kljun, N., Calanca, P., Rotachhi, M. W. and Schmid, H. P. 2004 A simple parameterisation for flux footprint predictions. Bound-Layer Meteor 112, 503–523.
  • Koponen, T., Isoviita, P. and Lammes, T. 1977. The Bryophytes of Finland: an annotated checklist. Flora Fennica 6, 1–77.
  • Kutzbach, L., Wagner, D. and Pfeiffer, E. M. 2004. Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia. Biogeochemisby 69, 341–362.
  • Laine, A., Sottocomola, M., Kiely, G., Byrne, K. A., Wilson, D. and co-authors. 2006. Estimating net ecosystem exchange in a patterned ecosystem: an example from a blanket bog. Agric. Forest MeteoroL 138, 231–243.
  • Lafleur, P. M., McCaughey, J. H., Joiner, D. W., Bartlett, P. A. and Jelinski, D. E. 1997. Seasonal trends in energy, water, and carbon dioxide fluxes at a northern boreal wetland. J. Geophys. Res. — Atmos. 102, 29,009–29,020.
  • Lloyd, J. and Taylor, J. A. 1994. On the temperature-dependence of soil respiration. Funct. EcoL 8, 315–323.
  • Malmer, N., Svensson, B. M. and. Wallen, B. 1994. Interactions between Sphagnum mosses and field layer vascular plants in the development of peat-forming systems. Folia Geobotanica & Phytotcvconomica 29, 483–496.
  • Moore, T. R. and Knowles, R. 1990. Methane emissions from fen, bog and swamp peatlands in Quebec. Biogeochemistiy 11,45–61.
  • Rhine, J., Riutta, T., Pihlatie, M., Aurela, M., Haapanala. S. and co-authors. 2007. Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus 59B, 449–457.
  • Ruuhijärvi, R. 1983. The Finnish mire types and their reginonal distribution. In: Ecosystems of the of the World 4B Mires: Swamp, Bog, Fen and Moor Regional Studies (ed. A. J. P. Gore). Elsevier, Amsterdam, pp. 47–68.
  • Sjörs, H. 1983. Mires of Sweden. In: Ecosystems of the of the World 4B Mires: Swamp, Bog, Fen and Moor. Reginonal Studies (ed. A. J. P. Gore). Elsevier, Amsterdam, 69–94.
  • Soegaard, H. and Nordstroem, C. 1999. Carbon dioxide exchange in a high-arctic fen estimated by eddy covariance measurements and modelling. Global Change Biol. 5, 547–562.
  • Sommerfeld, R. A., Mosier, A. R. and Musselman, R. C. 1993. CO2, CH4 and N20 flux through a wyoming snowpack and implications for global budgets. Nature 361, 140–142.
  • Strack, M., Waddington, J. M, Rochefort, L. and Tuittila, E.-S. 2006. Response of vegetation and net ecosystem carbon dioxide exchange at different peatland microforms following water table drawdown. J. Geophys. Res. — Biogeosci. 111, G02006, doi:10.1029/2005JG000145.
  • Ter Braak, C. J. E. and Smilauer, P. 2002. CANOCO Reference Manual and CanoD raw for Windows User's Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca, New York, USA.
  • Tuittila, E. S., Vasander, H. and Laine, J. 2004. Sensitivity of C sequestration in reintroduced Sphagnum to water-level variation in a cutaway peatland. Restoration EcoL 12,483–493.
  • Waddington, J. M. and Roulet, N. T. 2000. Carbon balance of a boreal patterned peatland. Global Change Biol. 6, 87–97.
  • Wallen, B., Falkengren-Grerup, U. and Malmer, N. 1988. Biomass, productivity and relative rate of photosynthesis of Sphagnum at different water levels on a south Swedish peat bog. Holarctic EcoL 11, 70–76.
  • Wilson, D., Alm, J., Riutta, T., Laine, J., Byrne, K. A. and co-authors. 2007. A high resolution green area index for carbon gas modelling in vascular plant peatland communities. Plant EcoL 190, 37-51, doi:10.1007/s11258-006-9189-1.