736
Views
78
CrossRef citations to date
0
Altmetric
Original Articles

Vulnerability of permafrost carbon to global warming. Part I: model description and role of heat generated by organic matter decomposition

, , , &
Pages 250-264 | Received 03 Nov 2005, Accepted 08 Nov 2007, Published online: 18 Jan 2017

Reference

  • Andra, O. and Paustian, K. 1987. Barley straw decomposition in the field: a comparison of models. Ecology 68, 1190–1200.
  • Anisimov, O. A. and Nelson, F. E. 1997. Permafrost zonation and climate change in the Northern Hemisphere: results from transient general circulation models. Clim. Change 35, 241–258.
  • Botch, M. S. and Kobak, K. I. 1995. Carbon pools and accumulation in peatlands of the former soviet union. Global Biogeochem. cycles 9, 37–46.
  • Cao, M. and Woodward, F. I. 1998. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393, 249–252.
  • Chuprynin, V., Zimov, S. and Molchanova, L. 2001. Modelling of thermal conditions of soils-and-grounds subject to the biological heat source. Kriosfera Zemli 6 (14), 80–87.
  • Clein, J. S. and Schimel, J. P. 1995. Microbial activity of tundra and taiga soils at subzero temperatures. Soil Biol. Biochem. 27, 1231–1234.
  • Conrad, R. 1989. Control of methane production in terrestrial ecosystems. In: Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere (eds M. Andreas and D. Schimel). John Wiley & Sons Ltd, S. Bernhard, Dahlem Konferenzen, 39–58.
  • Cox, P., Betts, R., Jones, C., Spall, S. and Totterdell, 1. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187.
  • Cramer, W., Bondeau, A., Woodward, E, Prentice, I., Betts, R. and co-authors. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biol. 7, 357–373.
  • Demchenko, P. F., Eliseev, A. V. and Molchov, I. I. 2001. Sensitivity of permafrost cover in the Northern Hemisphere to climate change. Clivar Exchanges 6, 9–11.
  • Dufresne, J.-L., Friedlingstein, P., Berthelot, M., Bopp, L., Ciais, P. and co-authors. 2002. On the magnitude of positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett. 6 (14), 1–4.
  • Duval, B. and Goodwin, S. 2000. Methane production and release from two New England peatlands. Int. MicrobioL 3, 89–95.
  • Fang, C., Smith, R, Moncrieff, J. B. and Smith, J. U. 2005. Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433, 57–59.
  • Goulden, M. L., Wofsy, S. C., Harden, J. W., Trumbore, S. E., Crill, P.M. and co-authors. 1998. Sensitivity of boreal forest carbon balance to soil thaw. Science 279 (5348), 214–217.
  • Hillel, D. 1980. Fundamentals of Soil Physics. Academic Press, New York.
  • Hodgman, C. D. ed. 1960. Handbook of Chemistry and Physics. The Chemical Rubber Publishing, Cliveland, OH.
  • IPCC, 1998. The Regional Impacts of Climate Change: An Assessment of Vulnerability. Cambridge University Press, Cambridge.
  • IPCC, 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York.
  • Jackson, R., Canadell, J., Ehleringer, J., Mooney, H., Sala, O. and co-authors. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389–411.
  • Kaetterer, T., Reichstein, M., Andren, O. and Lomander, A. 1998. Temperature dependence of organic matter decomposition: a critical review using literature data analyzed with different models. Biol Fertil Soils 27, 258–262.
  • Keeling, R. F., Piper, S. C. and Heimann, M. 1996. Global and hemispheric CO2 sinks deduced from changes in atmospheric 02 concentration. Nature 381, 218–221.
  • Khvorostyanov, D. V., Ciais, P., Krinner, G., Zimov, S. A., Corradi, C. and co-authors. 2008. Vulnerability of permafrost carbon to global warming. Part 2: Sensitivity of permafrost carbon stock to global warming. Tellus 60B, 10.1111/j.1600-0889.2007.003366.x.
  • Knorr, W., Prentice, I. C., House, J. I. and Holland, E. A. 2005. Long-term sensitivity of soil carbon turnover to warming. Nature 433, 298–301.
  • Koschorrek, M. and Conrad, R. 1993. Oxidation of atmospheric methane in soil: measurements in the field, in soil cores and in soil samples. Global Biogeochem. Cycles 7, 109–121.
  • Krinner, G., Viovy, N., de Noblet-Ducoudre, N., Ogee, J., Polcher, J. and co-authors. 2005. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem. Cycles 19, GB1015. 10.1029/2003GB002199.
  • Lawrence, D.-M. and Slater, A. G. 2005. A projection of severe near-surface permafrost degradation during the 21st century. Geophys. Res. Lett. 32, L24401.
  • Lloyd, J. and Taylor, J. A. 1994. On the temperature dependence of soil respiration. Funct. EcoL 8, 315–323.
  • MacDonald, G. J. 1990. Role of methane clathrates in past and future climates. Clim. Change 16 (3), 247–281.
  • Mack, M. C., Schuur, E. A. G., Bret-Harte, M. S., Shaver, G. R. and Chapin, F. S. 2004. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431, 440–443.
  • Marreto, T. and Mason, E. 1972. Gaseous diffusion coefficients. J. Phys. Chem. Ref Data 1 (1), 3–110.
  • Muhs, D. R. and Bettis, E. A. BI. 2003. Quaternary loess-paleosol sequences as examples of climate-driven sedimentary extremes. In Special Paper 370: Extreme depositional environments: mega end members in geologic time, volume370, pages 53-74. The Geological Society of America.
  • Osterkamp, T., Esch, D. and Romanovsky, V. 1998. Permafrost. In: Implications of Global Change in Alaska and the Bering Sea Region (eds G. Weller and P. Anderson). Proc. Workshop, June 1997, University of Alaska Fairbanks, Fairbanks, Alaska, 157.
  • Poutou, E., Krinner, G., Genthon, C. and de Noblet-Ducoudre, N. 2004. Impact of soil freezing on future climate change. Clim. Dyn. 6 (14), 621–639.
  • Price, S. J., Sherlock, R. R., Kelliher, F. M., McSeveny, T. M., Tate, K. R. and co-authors. 2003. Pristine New Zealand forest soil is a strong methane sink. Global Change Biol. 10, 16–26.
  • Ratkowsky, D. A., 011ey, J., McMeekin, T. A. and Ball, A. 1982. Relationship between temperature and growth rate of bacterial cultures. J. BacterioL 149, 1–5.
  • Richardson, C. and Wright, D. 1984. A model for generating daily weather variables. Technical report, U.S. Dept. of Agriculture, Agric. Res. Serv.
  • Romanovsky, N. 1993. Osnovy Kriogeneza Litosfeiy. Moscow State University, Moscow.
  • Schlegel, H. 1992. Allgemeine Mikrobiologie. Georg Thieme Verlag, Heidelberg, Germany.
  • Serreze, M. C., Walsh, J. E., Chapin, F. S. BI., Osterkamp, T., Dyurgerov, M. and co-authors. 2000. Observational evidence of recent change in the northern high-latitude environment. Clim. Change 46, 159–207.
  • Sowers, T., Bender, M., Raynaud, D. and Korotkvich, Y. 1992.315N of N2 in air trapped in polar ice: a tracer of gas transport in the firn and a possible constraint on ice age-gas differences. 97: 15683–15697.
  • Stendel, M. and Christensen, J. H. 2002. Impact of global warming on permafrost conditions in a coupled GCM. Geophys. Res. Lett., 29 (13), 10.1029/2001GL014345.
  • Stolbovoi, V. and McCallum, I. 2002. CD-ROM “Land Resources of Russia”. International Institute for Applied Systems Analysis and the Russian Academy of Science, Laxenburg, Austria.
  • Tans, P. P. 1998. Oxygen isotopic equilibrium between carbon dioxide and water in soils. Tellus 50B, 163–178.
  • Tarnocai, C. 1999. The effect of climate warming on the carbon balance of cryosols in Canada. Permafrost Periglacial Process. 10, 251–263.
  • Waelbroeck, C., Monfray, P., Oechel, W. C., Hastings, S. and Vourlitis, G. 1997. The impact of permafrost thawing on the carbon dynamics of tundra. Geophys. Res. Lett. 24, 229–232.
  • Walter, B. P., Zimov, S. A., Chanton, J. P., Verbyla, D. and Chapin, F. S. 2006. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443, 71–75.
  • Walter, P. and Heimann, M. 2000. A process-based, climate-sensitive model to derive methane emissions from natural wetlands: Application to five wetland sites, sensitivity to model parameters, and climate. Global Biogeochem. Cycles 6 (14), 745–765.
  • Wiesenburg, A. and Guinasso, N. L.Jr. 1979. Equilibrium solubilities of methane, carbon monoxide and hydrogen in water and sea water. J. Chem. Eng. Dat. 24, 356–360.
  • Williams, M., Eugster, W., Rastetter, E. B., Mcfadden, J. P. and Chapin, F. S. BI. 2000. The controls on net ecosystem productivity along an Arctic transect: a model comparison with flux measurements. Global Change Biol. 6(s1), 116–126.
  • Zazula, G. D., Froese, D. G., Schweger, C. E., Mathewes, R. W., Beaudoin, A. B. and co-authors. 2003. Ice-age steppe vegetation in east beringia. Nature 423, 603.
  • Zhuang, Q., McGuire, A. D., Melillo, J. M., Clein, J. S., Dargaville, R. J. and co-authors. 2003. Carbon cycling in extratropical ecosytems of the northern hemisphere during the 20th century: a modelling analysis of the influences of soil thermal dynamics. Tellus 55B, 751–776.
  • Zimov, S. A. 2005. Pleistocene Park: Return of the Mammoth's Ecosystem. Science 308, 796–798.
  • Zimov, S. A., Davydov, S., Zimova, G., Davydova, A. I., Zimov, N. S. and co-authors. 2004. The role of the permafrost reservoir in the global carbon budget. In: AGU Abstracts, B31A-0204. American Geophysical Union.
  • Zimov, S. A., Schuur, E. A. G. and Chapin, F. S. ifi. 2006. Permafrost and the Global Carbon Budget. Science 312, 1612–1613.
  • Zimov, S. A., Voropaev, Y. V, Semiletov, I. R, Davidov, S. P., Prosiannikov, S. E and co-authors. 1997. North Siberian lakes: a methane source fueled by pleistocene carbon. Science 277, 800–802.