66
Views
56
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of one year of Ion-DMPS data from the SMEAR II station, Finland

, , , &
Pages 318-329 | Received 10 Oct 2007, Accepted 18 Feb 2008, Published online: 18 Jan 2017

References

  • Chung, C. E., Ramanathan, V., Kim, D. and Podgomy, I. A. 2005. Global anthropogenic aerosol direct forcing derived from satel-lite and ground-based observations. J. Geophys. Res. 110, D24207, doi: 10.1029/2005JD006356.
  • Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T. and co-authors. 2005. Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR H, Hyytiälä, Finland. Boreal Environ. Res. 10, 323-336.
  • Donaldson, K., Li, X. Y. and MacNee, W. 1998. Ultrafine (nanome-tre) particle mediated lung injury. J. Aerosol Sci. 29, 553-560.
  • Hirsikko, A., Laakso, L., Hörrak, U., Aalto, P.P., Kerminen, V.-M. and co-authors. 2005. Annual and size dependent variation of growth rates and ion concentrations in boreal forest. Boreal Environ. Res. 5, 357-370.
  • Hoppel, W. and Frick, G. 1986. Ion-aerosol attachment coefficients and steady-state charge distribution on aerosols in a bipolar environment. Aerosol. Sci. Technol. 5, 1–21.
  • Iida, K., Stolzenburg, M., McMurry, P., Dunn, M., Smith, J. and co-authors. 2006. Contribution of ion-induced nucleation to new parti-cle formation: methodology and its application to atmospheric ob-servations in Boulder, Colorado. J. Geophys. Res. 111, D23201, doi: 10.1029/2006JDO07167.
  • Kerminen, V.-M., Anttila, T., Petäjä, T., Laakso, L., Gagne, S. and co-authors. 2007. Charging state of the atmospheric nucleation mode: implications for separating neutral and ion-induced nucleation. J. Geo-phys. Res. 112, D21205, doi: 10.1029/2007JD008649.
  • Kulmala, M. 2003. How particles nucleate and grow. Science 302, 1000–1001.
  • Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A. and co-authors. 2004. Formation and growth rates of ultrafine atmo-spheric particles: a review of observations. J. Aerosol Sci. 35, 143-176.
  • Kulmala, M., Riipinen, I., Sipilä, M., Manninen, H. E., Petäjä, T. and co-authors. 2007. Toward direct measurment of atmospheric nucleation. Science 318, 89-92.
  • Laakso, L., Gagne, S., Petäjä, T., Hirsikko, A., Aalto, P. P. and co-authors. 2007. Detecting charging state of ultra-fine particles: instrumental de-velopment and ambient measurements. Atmos. Chem. Phys. 7, 1333-1345.
  • Lohmann, U. and Feichter, J. 2005. Global indirect aerosol effects: a review. Atmos. Chem. Phys. 5, 715-737.
  • Maelä, J. M., Salm, J., Smimov, V. V., Koponen, I., Paatero, J. and co-authors. 2003. Electrical charging state of fine and ultrafine particles in boreal forest air. J. Aerosol Sci. 32, S149-150.
  • Penner, J. E., Quaas, J., Storelvmo, T., Takemura, T., Boucher, 0. and co-authors. 2006. Model intercomparison of indirect aerosol effects. Atmos. Chem. Phys. 6, 3391-3405.
  • Pope, C. A., DI and Dockery, D. W. 2006. Health effects of fine particu-late air pollution: lines that Connect. J. Air Waste Manage. Assoc. 56, 709-742.
  • Reischl, G. P., Mäkelä, J. M., Karch, R. and Necid, J. 1996. Bipolar charging of ultrafine particles in the size range below 10 nm. J. Aerosol. Sci. 27, 931-949.
  • Riipinen, I., Sihto, S.-L., Kulmala, M., Arnold, E, Dal Maso, M. and co-authors. 2007. Connections between atmospheric sulphuric acid and new particle formation during QUEST DI-IV campaigns in Heidelberg and Hyytiälä. Atmos. Chem. Phys. 7, 1899–1914.
  • Seinfeld, J. H. and Pandis, S. N. 1998. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley, New York.
  • Spracklen, D. V., Carslaw, K., Kulmala, M., Kerminen, V.-M., Mann, G. W. and co-authors. 2006. The contribution of boundary layer nu-cleation events to total particle concentrations on regional and global scales. Atmos. Chem. Phys. 6,5631-5648.
  • Stolzenburg, M. and McMurry, P. 1991. An ultrafine aerosol condensation nucleus counter. Aerosol Sci. Technol. 14, 48–65.
  • Tammet, H. 2006. Continuous scanning of the mobility and size distri-bution of charged clusters and nanometer particles in atmospheric air and the Balanced Scanning Mobility Analyzer BSMA. Atmos. Res. 82, 523–535.
  • Twomey, S. 1991. Aerosols, clouds and radiation. Atmos. Environ. 25A, 2435–2442.
  • Vana, M., Tamm, E., Hörrak, U., Mirme, A., Tammet, H. and co-authors. 2006. Charging state of atmospheric nanoparticles during the nucle-ation burst events. Atmos. Res. 82, 536-546.
  • Wiedensohler, A. 1988. An approximation of the bipolar charge distri-bution for particles in the submicron range. J. Aerosol Sci. 19, 387–389.
  • Winklmayr, W., Reischl, G., Lindner, A. and Berner, A. 1991. A new electromobility spectrometer for the measurement of aerosol size dis-tributions in the size range from 1 to 1000 nm. J. Aerosol Sci. 22, 289–296.
  • Yu, E and Turco, fR. 2001. From molecular clusters to nanoparticles: role of ambient ionization in tropospheric aerosol formation. J. Geophys. Res. 106,4797–4817.
  • Yu, E, Wang, Z., Luo, G. and Turco, R. 2006. Ion-mediated nucleation as an important global source of tropospheric aerosols. Atmos. Chem. Phys. Dicuss. 7, 13597–13626.