220
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Climatic significance of tree-ring width and δ13C in a Spanish pine forest network

, , , &
Pages 771-781 | Received 31 Jul 2007, Accepted 06 Jun 2008, Published online: 18 Jan 2017

References

  • Andreu, L., Gutierrez, E., Macias, M., Ribas, M., Bosch, 0. and co-authors. 2007. Climate increases regional tree growth variabil-ity in Iberian pine forests. Global Change Biol. 13, 804-815, 10.1111/j.1365-2486.2006.01322.x.
  • Aniol, R. W. 1983. Tree-ring analysis using CATRAS. Dendrochronol-gia 1, 45–53.
  • Biondi, F. and Waikul, K. 2004. DENDROCUM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. CompuL Geosci.-UK 30,303–311.
  • Blanco, E., Casado, M. A., Costa, M., Escribano, R., Garcia, M. and co-authors. 1997. Los bosques ibéricos (in Spanish). Editorial Planeta, Barcelona, 572 pp.
  • Cook, E. R. 1985. A Time Series Analysis Approach to Tree-ring Stan-dardization. PhD thesis. University of Arizona, Tucson.
  • Cook, E. R. 1990. A conceptual linear aggregate model for tree rings. In: Methods of Dendrochronology (eds. E. R. Cook and L. A. Kairiukstis). Kluwer, Boston, 98–104.
  • Cook, E. R. and Briffa, K. R. 1990. Data Analysis. In: Methods of Dendrochronology (eds. E. R. Cook and L. A. Kairiulcstis). Kluwer, Boston, 97–162.
  • Cook, E. R. and Peters, K. 1997. Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7, 359–368.
  • Cook, E. R., Briffa, K., Shigatov, S. and Mazepa, V. 1990. Tree-ring standardization and growth-trend estimation. In: Methods of Den-drochronology (eds. E. R. Cook and L. A. Kairiulcstis). Kluwer, Boston, 104–123.
  • Feng, X. 1998. Long-term ci/ca response of trees in western North America to atmospheric CO2 concentration derived from carbon iso-tope chronologies. Oecologia 117, 19–25.
  • Feng, X. and Epstein, S. 1995. Carbon isotopes of trees from arid env-iornments and implications for reconstructing atmospheric CO2 con-centration. Geochim. Cosmochim. Acta 59, 2599–2608.
  • Ferrio, J. P. and Voltas, J. 2005. Carbon and oxygen isotope ratios in wood constituents of Pinus halepensis as indicators of precipitation, temperature and vapour pressure deficit. Tellus 57B, 164–173.
  • Ferrio, J. P., Florit, A., Vega, A., Serrano, L. and Voltas, J. 2003. 413C and tree-ring width reflect different drought responses in Quercus ilex and Pinus halepensis. Oecologia 137, 512–518.
  • Francey, R. J. and Farquhar, G. D. 1982. An explanation of 13 012c variations in tree-rings. Nature 297, 28–31.
  • Fritts, H. C. 1976. Tree Rings and Climate. Academic Press, New York, 433 pp.
  • Gagen, M., McCarroll, D. and Edouard, J. -L. 2004. Latewood width, maximum density, and stable carbon isotope ratios of pine as climate indicators in a dry subalpine environment, French Alps. Arct. AntarcL Alp. Res. 36, 166-171.
  • Gagen, M., McCarroll, D. and Edouard, J.-L. 2006. Combining ring width, density and stable carbon isotope proxies to enhance the cli-matic signal in tree-rings: an example from the southern French Alps. Clim. Change 78, 363–379.
  • Guiot, J. 1991. The bootstrapped response function. Tree-Ring Bull. 51, 39–41.
  • Helama, S., Lindholm, M., Timonen, M. and Eronen, M. 2004. Detection of climate signal in dendrochronological data analysis: a comparison of tree-ring standardization methods. Theor. AppL ClimatoL 79, 239–254.
  • Helle, G. and Schleser, G. H. 2004. Interpreting climate proxies from tree-rings. In: Towards a Synthesis of Holocene Proxy Data and Cli-mate Models (eds. H. Fischer, G. Floeser, T. Kumke, Lohmann, H. and co-authors). Springer Verlag, Berlin, 129-148.
  • Helle, G., Schleser, G. H. and Bräuning, A. 2002. Climate history of the Tibetan Plateau for the last 1500 years as inferred from stable carbon isotopes in tree-rings. IAEA CN-80/80 301–311.
  • Hemming, D. L., Switsur, V. R., Waterhouse, J. S., Heaton, T. H. E. and Carter, A. H. C. 1998. Climate variation and the stable carbon isotope composition of tree ring cellulose: an intercomparison of Quercus robut; Fagus sylvatica and Pinus sylvestris. Tellus 50B, 25–33.
  • Holmes, R. L. 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43, 68–78.
  • Holmes, R. L. 1992. Dendrochronology Program Library, Version 1992-1. Laboratory of Tree-Ring Research, University of Arizona, Tucson. Hughes, M.K., Kelly, P.M., Pilcher, J.R., Lamarche, V.C. 1982. Climate
  • from Tree Rings. Cambridge University Press, Cambridge, 223 pp.
  • IAEA 1995. TECDOC-825. Reference and intercomparison materials for stable isotopes of light elements, In: Proceedings of a Consultants Meeting, 1-3 December 1993, Vienna.
  • IPCC 2001. Europe (Chapter 13). In: Climate Change 2001: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds. J. J. McCarthy, O. F. Canziani, Leary D.J, Cambridge University Press, Cambridge, 643-681.
  • Leavitt, S. W. and Long, A. 1984. Sampling strategy for stable carbon isotope analysis of tree rings in pine. Nature 311, 145–147.
  • Leavitt, S.W. and Long, A. 1989. Drought indicated in carbon-13/carbon-12 ratios of southwestern tree rings. Water Resources Bull. 25, 341–347.
  • Leavitt, S.W., Wright, WE. and Long, A. 2002. Spatial expression of ENSO, drought and summer monsoon in seasonal 313C of ponderosa pine tree rings in southern Arizona and New Mexico. J. Geophys. Res. 107,4349, 10.1029/2001JD001312.
  • Leuenberger, M. 2007. To what extent can ice core data contribute to the understanding of plant ecological developments of the past? In: Stable Isotopes as Indicators of Ecological Change (eds. T. Dawson and R. Siegwolf). Academic Press, London, 211–234.
  • Loader, N. J., Robertson, I., Barker, A. C., Switsur, V. R. and Waterhouse, J. S. 1997. An improved method for the batch processing of small wholewood samples to a-cellulose. Chem. Geol. 136, 313–317.
  • Macias, M., Andreu, L., Bosch, O., Camarero, J. J. and Gutierrez, E. 2006. Increasing aridity is enhancing silver fir (Abies alba Mill.) water stress in its south-western distribution limit. C/im. Change 79, 289-313, 10.1007/s10584-006-9071-0.
  • Matzner, S. L., Rice, K. J. and Richards, J. H. 2001. Factors affecting the relationship between carbon isotope discrimination and transpiration efficiency in blue oak (Quercus douglasii). Aust. J. Plant PhysioL 28, 49–56.
  • McCarroll, D. and Pawellek, F. 2001. Stable carbon isotope ratios of Pinus sylvestris from northern Finland and the potential for extracting a climate signal from long Fennoscandian chronologies. Holocene 11, 517–526.
  • Panek, J. A. 1996. Correlations between stable carbon-isotope abun-dance and hydraulic conductivity in Douglas-fir across a climate gra-dient in Oregon, USA. Tree PhysioL 16, 747–755.
  • Panek, J. A. and Goldstein, A. H. 2001. Response of stomatal conduc-tance to drought in ponderosa pine: implications for carbon and ozone uptake. Tree PhysioL 21, 337–344.
  • Pauelas, J., Lloret, F. and Montoya, R. 2001. Severe drought effects on Mediterranean woody flora in Spain. For Sci. 47, 214–218.
  • Ponton S., Dupouey, J. L., Breda, N., Feuillat, F., Bodenes, C. and co-authors. 2001. Carbon isotope discrimination and wood anatomy variations in mixed stands of Quercus robur and Quercus petraea. Plant Cell Environ. 24, 861-868.
  • Richter, K. and Eckstein, D. 1991. The dendrochronological signal of pine trees (Pinus spp.) in Spain. Tree-Ring Bull. 51, 1–13.
  • Robertson, I., Rolfe, J., Switsur, V. R., Carter, A. H. C., Hall, M. A. and co-authors. 1997a. Signal strength and climate relationship in 13012c ratios of tree ring cellulose from oak in southwest Finland. Geophys. Res. Lett. 24, 1487-1490.
  • Robertson, I., Switsur, V. R., Carter, A. H. C., Barker, A. C., Waterhouse, J. S. and co-authors. 1997b. Signal strength and climate relationship in 13C/12C ratios of tree ring cellulose from oak in east England. J. Geophys. Res. 102, 19507-19516.
  • Saurer, M., Siegenthaler, U. and Schweingruber, E H. 1995. The climate-carbon isotope relationship in tree rings and the significance of site conditions. Tellus 47B, 320–330.
  • Sohn, A. W. and Reiff, F. 1942. Natriumchlorit als Aufschlussmittel (in German). Der Papierfabrikant 1/2, 5–7.
  • Stokes, M. A. and Smiley, T. L. 1968. An Introduction to Tree-ring Dating. University of Chicago Press, Chicago, 73 pp.
  • Swanborough, P. W., Lamont, B. B. and February, E. C. 2003.313C and water-use efficiency in Australian grasstrees and South African conifers over the last century. Oecologia 136, 205–212.
  • Tang, K., Feng, X. and Funkhouser, G. 1999. The 313C of tree rings in full-bark and strip-bark bristlecone pine trees in the White Mountains of California. Global Change Biol. 5, 33–40.
  • Tardif, J., Camarero, J. J., Ribas, M. and Gutierrez, E. 2003. Spatiotem-poral variability in tree growth in the central Pyrenees: climatic and site influences. EcoL Monogr. 73, 241–257.
  • Treydte, K., Schleser, G. H., Schweingruber, F. H. and Winiger, M. 2001. The climatic significance of 313C in subalpine spruces (Liitschental, Swiss Alps). Tellus 53B, 593-611.
  • Wigley, T. M. L., Briffa, K. R. and Jones, P. D. 1984. On the aver-age value of correlated time series, with applications in dendrocli-matology and hydrometeorology. J. Clim. AppL Meterol. 23, 201–213.
  • Wilson, A. T. and Grinsted, M. J. 1977.12C/13C in cellulose and lignin as palaeothermometers. Nature 265, 133–135.
  • Yamaguchi, D. K. 1991. A simple method for cross-dating increment cores from living trees. Can. J. For Res. 21, 414–416.