196
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Spring initiation and autumn cessation of boreal coniferous forest CO2 exchange assessed by meteorological and biological variables

, , , , , & show all
Pages 701-717 | Received 18 Feb 2009, Accepted 17 Aug 2009, Published online: 18 Jan 2017

References

  • Aalto, T., Hatakka, J., Paatero, J., Tuovinen, J.-R, Aurela, M., and co-authors. 2002. Tropospheric carbon dioxide concentrations at a noth-ern boreal site in Finland: basic variations and source areas. Tellus 54B, 110–126.
  • Ananyev, G., Kolber, Z. S., Klimov, D., Falkowski, P. G, Berry, J. S. and co-authors. 2005. Remote sensing of heterogeneity in photosynthetic efficiency, electron transport and dissipation of excess light in Populus deltoids stands under ambient and elevated CO2 concentrations, and in a tropical forest canopy, using a new laser-induced fluorescence transient device. Global Change Biol. 11, 1195–1206.
  • Arneth, A., Lloyd, J., Shibistova, O., Sogachev, A. and Kolle, O. 2006. Spring in the boreal environment: observations on pre- and post-melt energy and CO2 fluxes in two central Siberian ecosystems. Boreal Environ. Res. 11, 311–328.
  • Aurela, M. 2005. Carbon dioxide exchange in subarctic ecosystems mea-sured by a micrometeorological technique. Contributions 51, Finnish Meteorological Institute, Helsinki, Finland, 132 pp.
  • Baker, N. R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59, 89–113.
  • Baldocchi, D., 2003. Assessing the eddy covariance technique for eval-uating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biol. 9,479–492.
  • Bartsch, A., Kidd, R. A., Wagner, W. and Bartalis. Z. 2007. Temporal and spatial variability of the beginning and end of daily spring freeze/thaw cycles derived from scatterometer data. Remote Sens. Environ. 106, 360–374.
  • Bergh, J. and Linder, S. 1999. Effects of soil warming during spring on photosynthetic recovery in boreal Norway spruce stands. Global Change Biol. 5, 245–253.
  • Busch, F., Hiiner, N. P. A. and Ensminger, I. 2007. Increased air tem-perature during simulated autumn conditions does not increase pho-tosynthetic carbon gain but affects the dissipation of excess energy in seedlings of the evergreen conifer Jack pine. Plant PhysioL 143, 1242–1251.
  • Churlcina, G., Schimel, D., Braswell, B. H. and Xiao, X. 2005. Spatial analysis of growing season length control over net ecosystem exchange. Global Change Biol. 11, 1777–1787.
  • Denning, S., Nicholls, M., Prihodko, L., Baker, I., Vidale, P.L. and co-authors. 2003. Simulated variations in atmospheric CO2 over a Wis-consin forest using a coupled ecosystem-atmosphere model. Global Change Biol. 9, 1241–1250.
  • Dunn, A. L., Barford, C. C., Wofsy, S. C., Goulden, M. L. and Daube, B. C. 2007. A long-term record of carbon exchange on a boreal black spruce forest: means, responses to interannual variability and decadal trends. Global Change Biol. 13, 577–590.
  • Eneroth, K., Aalto, T., Hataldca, J., Holmen, K., Laurila, T. and co-authors. 2005. Atmospheric transport of carbon dioxide to a baseline monitoring station in northern Finland. Tellus 57B, 366–374.
  • Ensminger, I., Sveshnilcov, D., Campbell, D. A., Funk, C., Jansson, S. and co-authors. 2004. Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Global Change Biol. 10, 995–1008.
  • Ensminger, I., Schmidt, L. and Lloyd, J. 2008. Soil temperature and intermittent frost modulate the rate of recovery of photosynthesis in Scots pine under simulated spring conditions. New Phytol. 177,428–442.
  • Evain, S., Flexas, J. and Moya, I. 2004. A new instrument for passive remote sensing: 2. Measurements of leaf and canopy reflectance at 531 nm and their relationship with photosynthesis and chlorophyll fluorescence. Remote Sens. Environ. 91, 175–184.
  • Falge, E., Baldocchi, D., Tenhunen, J., Aubinet, M., Bakwin, P. and co-authors. 2002. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric. Forest MeteoroL 113, 53–74.
  • Finnish Meteorological Institute. 1991. Climatological Statistics in Fin-land 1961-1990. Supplement to the Meteorological Yearbook of Fin-land. The Finnish Meteorological Institute, Helsinki, Finland.
  • Flexas, J., Escalona, J. M., Evain, S., Gulias, J., Moya, I. and co-authors. 2002. Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conduc-tance during water-stress in C3 plants. Physio/ogia P/antarum 114, 231–240.
  • Grelle, A., Lindroth, A. and Molder, M. 1999. Seasonal variation of boreal forest surface conductance and evaporation. Agric. Forest Me-teorol. 98-99, 563–578.
  • Gloor, M., Balcwin, P., Hurst, D., Lock, L., Draxler, R. and co-authors. 2001. What is the concentration footprint of a tall tower? J. Geophys. Res. 106, 17831–17840.
  • Gu, L., Hanson, P. J., Post, W. M., Kaiser, D. P., Yang, B. and co-authors. 2008. The 2007 eastern US spring freeze: increased cold damage in a warming world? BioScience 58, 253–262.
  • Hänninen, H. and Kramer, K. 2007. A framework for modelling the annual cycle of trees in boreal and temperate regions. Silva Fenn. 41, 167–205.
  • Hatalcka, J., Aalto, T., Aaltonen, V., Aurela, M., Hakola, H. and co-authors. 2003. Overview of atmospheric research activities and results at Pallas GAW station. Boreal Environ. Res. 8, 365–384.
  • Higuchi, K., Worthy, D., Chan, D. and Shaskov, A. 2003. Regional source/sink impact on the diurnal, seasonal and inter-annual variations in atmospheric CO2 at a boreal forest site in Canada. Tellus 55B, 115–125.
  • Holdridge, L. R. 1967. Lize zone Ecology. Tropical Science Center, San Jose.
  • Jonsson, A. M., Linderson, M.-J., Stjernquist, I., Schlyter, P. and Barring, L. 2004. Climate change and the effect of temperature backlashes causing frost damage in Picea abies. Global Planet. Change 44, 195–207.
  • Keeling, C. D., Chin, J. F. S. and Whorf, T. P. 1996. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382, 146–149.
  • Kimball, J. S., McDonald, K. C., Running, S. W. and Frolking, S. E. 2004. Satellite radar remote sensing of seasonal growing seasons for boreal and subalpine evergreen forests. Remote Sens. Environ. 90, 243–258.
  • Kolari, P., Lappalainen, H. K., Hänninen, H. and Han, P. 2007. Relation-ship between temperature and the seasonal course of photosynthesis in Scots pine at northern timberline and in southern boreal zone. Tellus 59B, 542–552.
  • Lagergren, F., Eklundh, L., Grelle, A., Lundblad, M., Molder, M. and co-authors. 2005. Net primary production and light use efficiency in a mixed coniferous forest in Sweden. Plant Cell Environ. 28,412–423.
  • Lagergren, E, Lindroth, A., Dellwilc, E., Ibrom, A., Lanlcreijer, H. and co-authors. 2008. Biophysical controls on CO2 fluxes of three north-ern forests based on long-term eddy covariance data. Tellus 60B, 143–152.
  • Leinonen, I. and Kramer, K. 2002. Applications of phonological models to predict the future carbon sequestration potential of boreal forests. Climatic Chance 5, 99–113.
  • Leinonen, I., Repo, T. and Hänninen, H. 1997. Changing environmental effects on frost hardiness of Scots pine during dehardening. Ann. Bot-London 79, 133–137.
  • Linlcosalo, T., Häldcinen, R., Terhivuo, J., Tuomenvirta, H. and Hari, P. 2008. The time series of flowering and leaf bud burst of bo-real trees (1846-2005) support the direct temperature observa-tions of climatic warming. Agric. Forest. MeteoroL 149, 453–461.
  • Louis, J., Ounis, A., Ducruet, J.-M., Evain, S., Laurila, T. and co-authors. 2005. Remote sensing of sunlight-induced chlorophyll fluorescence and reflectance of Scots pine in the boreal forest during spring recov-ery. Remote Sens. Environ. 96, 37–48.
  • Makeld, A., Hari, P., Berninger, F., Hänninen, H. and Nilcinmaa, E. 2004. Acclimation of photosynthetic capacity in Scots pine to the annual cycle of temperature. Tree Phys. 24, 369–376.
  • Makeld, A., Kolari, P., Karimälci, J., Nilcinmaa, E., Peramaki, M. and co-authors. 2006. Modelling five years of weather-driven variation of GPP in a boreal forest. Agric. Forest MeteoroL 139, 382–398.
  • Marklcanen, T., Rannik, Ü., Keronen, P., Suni, T. and Vesala, T. 2001. Eddy covariance fluxes over a boreal Scots pine forest. Boreal Environ. Res. 6, 65–78.
  • Maxwell, K. and Johnson, G. N. 2000. Chlorophyll fluorescence - a practical guide. J. Exp. BoL 61, 659–668.
  • Meroni, M. and Colombo, R. 2006. Leaf level detection of solar induced chlorophyll fluoresence by means of a subnanometer resolution spec-troradiometer. Remote Sens. Environ. 103, 438–448.
  • Moncrieff, J., Clement, R., Finnigan, J. and Meyers, T. 2004. Averaging, detrending and filtering eddy covariance time series. In: Handbook of Micrometeorology: A Guide for Surface Flux Measurements (eds X. Lee, W. Massman and B. Law). Kluwer Academic Press, Dordrecht, The Netherlands, 7–31.
  • Monson, R. K., Sparks, J. P., Rosenstiel, T. N., Scott-Denton, L. E., Hux-man, T. E. and co-authors. 2005. Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecolo-gia 146, 130–147.
  • Moya, I., Camenenb, L., Evain, S., Goulas, Y., Cerovic, Z. G. and co-authors. 2004. A new instrument for passive remote sensing: 1. Mea-surements of sunlight-induced chlorophyll fluorescence. Remote Sens. Environ. 91, 186–197.
  • Murayama, S., Higuchi, K. and Taguchi, S. 2007. Influence of at-mospheric transport on the inter-annual variation of the CO2 sea-sonal cycle downward zero-crossing. Geophys. Res. Lett. 34, L04811, 10.1029/2006GL028389.
  • Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC). 2006. MODIS subsetted land products, Collection 4. Available on-line [http://www.daac.ornl.gov/MODIS/modis.html] from ORNL DAAC, Oak Ridge, Tennessee, U.S.A. Accessed March 17,2008.
  • Ogren, E. 2001. Effects of climatic warming on cold hardiness of some northern woody plants assessed from simulation experiments. PhysioL Planta rum 112,71–77.
  • Pelkonen, P. and Han, P. 1980. The dependence of the springtime recov-ery of CO2 uptake in Scots pine on temperature and internal factors. Flora 169, 398–404.
  • Piao, S., Ciais, R, Friedlingstein, P., Peylin, P., Reichstein, M. and co-authors. 2008. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52.
  • Randerson, J. T., Field, C. B., Fung, I. Y. and Tans, P. P. 1999. In-creases in early season ecosystem uptake explain the recent changes in the seasonal cycle of atmospheric CO2 at high northern latitudes. Geophys. Res. Lett. 26, 2765–2768.
  • Repo, T., Hänninen, H. and Kellomälci, S. 1996. The effects of long-term elevation of air temperature and CO2 on the frost hardiness of Scots pine. Plant Cell Environ. 19, 209–216.
  • Rosema, A., Snel, J. F. H., Zahn, H., Buurmeijer, W. F. and Van Hode, L. W. A. 1998. The relation between laser-induced chlorophyll fluo-rescence and photosynthesis. Remote Sens. Environ. 65, 143–154.
  • Schleip, C., Menzel, A. and Dose, V. 2008. Norway spruce (Picea abies): Bayesian analysis of the relationship between temperature and bud burst. Agric. Forest MeteoroL 148, 631–643.
  • Solantie, R. 2004. Daytime temperature sum—a new thermal variable describing growing season characteristics and explaining evapotran-spiration. Boreal Environ. Res. 9, 319–333.
  • Solantie, R. 2005. Productivity of boreal forests in relation to climate and vegetation zones. Boreal Environ. Res. 10, 275–297.
  • Suni, T., Berninger, E, Marlcicanen, T., Keronen, R, Rannilc, U. and co-authors. 2003. Interannual variability and timing of growing-season CO2 exchange in a boreal forest. J. Geophys. Res. 108, 4265, 10.1029/2002JD002381.
  • Tanja, S., Berninger, E, Vesala, T., Marlcicanen, T., Hari, P. and co-authors. 2003. Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Global Change Biol. 9, 1410–1426.
  • Taylor, G., Tallis, M.J., Giardina, C. R., Percy, K. E., Miglietta, F. and co-authors. 2008. Future atmospheric CO2 leads to delayed autumnal senescence. Global Change Biol. 14, 264–275.
  • Thoning, K. W., Tans, P. P. and Komhyr, W. D. 1989. Atmospheric carbon dioxide at Mauna Loa Observatory 2. Analysis of the NOAA GMCC data, 1974-1985. J. Geophys. Res. 94, 8549–8565.
  • Thum, T., Aalto, T., Laurila, T., Aurela, M., Lindroth, A. and co-authors. 2008. Assessing seasonality of biochemical CO2 exchange model pa-rameters from micrometeorological flux observations at boreal conif-erous forest. Biogeosciences 5, 1625–1639.
  • Trenberth, K. E., Jones, P. D., Ambenje, R, Bojariu, R., Easterling, D. and co-authors. 2007. Observations: surface and atmospheric climate change. In: Climatic Change 2007: The Physical Science Basis. Con-tribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, and co-editors). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Tuomenvirta, H., Alexandersson, H., Drebs, A., Frich, P. and Nordli, P.O. 2000. Trends in nordic and arctic temperature extremes and ranges. J. Clim. 13, 977–990.
  • Ueyama, M., Harazono, Y. and Ohtalci, E. 2006. Controlling factors on the interannual CO2 budget at subarctic black spruce forest in interior Alaska. Tellus 58B, 491–501.
  • Vendläinen, A. and Nordlund, A. 1988. Kasvukauden ilmastotiedotteen sisälti3 ja käyttö (Contents and use of the climatological report of a growing season, in Finnish). Finnish Meteorological Institute Reports 1988:6, Finnish Meteorological Institute, Helsinki, 63 pp.
  • Vesala, T., Haataja, J., Aalto, P., Altimir, N., Buzorius, G. and co-authors. 1998. Long-term field measurements of atmosphere-surface interac-tions in boreal forest combining forest ecology, micrometeorology, aerosol physics and atmospheric chemistry. Trends Heat, Mass Mo-ment. Transfer 4, 17–35.
  • Vesala, T., Suni, T., Rannilc, Ü., Keronen, P., Marklcanen, T. and co-authors. 2005. Effect of thinning on surface fluxes in a boreal forest. Global Biogeochem. Cyc. 19, 10.1029/2004GB002316.
  • Welp, L. R., Randerson, J. T. and Liu, H. P. 2007. The sensitivity of carbon fluxes to spring warming and summer drought depends on plant functional type in boreal forest ecosystems. Agric. Forest Meteorol. 147, 172–185.
  • Woldendorp, G., Hill, M.J., Doran, R. and Ball, M. C. 2008. Frost in fu-ture climate: modelling interactive effects of warmer temperatures and rising atmospheric [CO2] on the incidence and severity of frost dam-age in a temperate evergreen (Eucalyptus pauciflora). Global Change Biol. 14, 294–308.
  • Yuan, F., Arain, A., Barr, A. G., Black, A., Bourque, C. P.-A. and co-authors. 2008. Modeling analysis of primary controls on net ecosystem productivity of seven boreal and temperate coniferous forests across a continental transect. Global Change Biol. 14, 1765–1784.