259
Views
38
CrossRef citations to date
0
Altmetric
Articles

Observation-based estimates of fossil fuel-derived CO2 emissions in the Netherlands using Δ14C, CO and 222Radon

, , , &
Pages 389-402 | Received 04 Dec 2009, Accepted 01 Jul 2010, Published online: 18 Jan 2017

References

  • Baker, D. E, Law, R. M., Gurney, K. R., Rayner, P., Peylin, P. and co-authors. 2006. TransCom 3 inversion intercomparison: impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988-2003. Glob. Biogeochem. Cycle 20,17.
  • Bergamaschi, P., Krol, M., Dentener, F., Vermeulen, A., Meinhardt, E and co-authors. 2005. Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5. Atmos. Chem. Phys. 5,2431-2460.
  • Bousquet, R, Peylin, R, Ciais, P., Le Quere, C., Friedlingstein, P. and co-authors. 2000. Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290, 1342-1346.
  • Campbell, J. E., Carmichael, G. R., Tang, Y., Chai, T., Vay, S. A. and co-authors. 2007. Analysis of anthropogenic CO2 signal in ICARTT using a regional chemical transport model and observed tracers. Tellus B 59, 199-210.
  • Draxler, R. R. and Rolph, G. D. 2003. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD.
  • Engelen, R. J., Denning, A. S. and Gurney, K. R. 2002. On error estimation in atmospheric CO2 inversions. J. Geophys. Res. 107, 4635, doi:10.1029/2002JDO02195.
  • Forster, R, Ramaswamy, V., Artaxo, R, Berntsen, T., Betts, R. and co-authors. 2007. Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis and co-editiors). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Gamnitzer, U., Karstens, U., Kromer, B., Neubert, R. E. M., Meijer, H. A. J. and co-authors. 2006. Carbon monoxide: a quanti-tative tracer for fossil fuel CO2? J. Geophys. Res. 111, D22302, doi:10.1029/2005JD006966.
  • Graven, H D., Stephens, B. B., Guilderson, T. P., Campos, T. L., Schimel, D. S. and co-authors. 2009. Vertical profiles of biospheric and fossil fuel-derived CO2 and fossil fuel CO2 CO ratios from airborne mea-surements of 14C, CO2 and CO above Colorado, USA. Tellus 61B, 536-546.
  • Hesshaimer, V. 1997. Tracing the global carbon cycle with bomb radi-ation. PhD thesis. Univ. of Heidelberg, Heidelberg, Germany.
  • Langmann, B. 2000. Numerical modelling of regional scale transport and photochemistry directly together with meteorological processes. Atmos. Environ., 3585-3598.
  • Levin, I. 1984. Atmospheric CO2, sources and sinks on the European continent (in German). PhD Thesis. Univ. of Heidelberg, Heidelberg, Germany.
  • Levin, I. 1987. Atmospheric CO2 in continental Europe—an alternative approach to clean air CO2 data. Tellus 39B, 21–28.
  • Levin, I., Kromer, B., Schmidt, M. and Sartorius, H. 2003. A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations. Geophys. Res. Lett. 30, 2194, doi:10.1029/2003GL018477.
  • Levin, I. and Karstens, U. 2007. Inferring high-resolution fossil fuel CO2 records at continental sites from combined 14CO2 and CO ob-servations. Tellus 59B, 245–250.
  • Levin, I., Hammer, S., Kromer, B. and Meinhardt, F. 2008. Radiocar-bon observations in atmospheric CO2: Determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Sci. Tot. Environ. 391, 211–216.
  • Meijer, H. A. J., Smid, H. M., Perez, E. and Keizer, M. G. 1996. Isotopic characterisation of anthropogenic CO2 emissions using isotopic and radiocarbon analysis. Phys. Chem. Earth 21, 483–487.
  • Mook, W. G. and Van Der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41, 227–239.
  • Neubert, R. E. M., Spijkervet, L. L., Schut, J. K., Been, H. A. and Meijer, H. A. J. 2004. A computer-controlled continuous air drying and flask sampling system. J. Atmos. Ocean Tech. 21, 651–659.
  • Olivier, J. G. J., Van Aardenne, J. A., Dentener, F., Ganzeveld, L. and Peters, J. A. H. W. 2005. Recent trends in global greenhouse gas emissions: regional trend and spatial distribution of key sources. In: “Non-0O2 Greenhouse Gases (NCGG-4)”. A. van Amstel (coord.), pp.325-330. Millpres, Rotterdam, ISBN 9059660439.
  • Peylin, P., Rayner, P. J., Bousquet, R, Carouge, C., Hourdin, F. and co-authors. 2005. Daily CO2 flux estimates over Europe from continuous atmospheric measurements: 1, inverse methodology. Atmos. Chem. Phys. 5, 3173-3186.
  • Randerson, J. T., Enting, I. G., Schuur, E. A. G., Caldeira, K. and Fung, I. Y. 2002. Seasonal and latitudinal variability of troposphere 14CO2: post bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere. Global Biogeochem. Cycle 16, 1112, doi:10.1029/2002GB001876.
  • Rayner, P. J., Enting, I. G., Francey, R. J. and Langenfelds, R. 1999. Reconstructing the recent carbon cycle from atmospheric CO2, delta “C and 02/N2 observations. Tellus B 51, 213–232.
  • Rodenbeck, C., Houweling, S., Gloor, M. and Heimann, M. 2003. CO2 flux history 1982-2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos. Chem. Phys. 3, 1919–1964.
  • Rödenbeck, C., Conway, T. J. and Langenfelds, R. L. 2006. The effect of systematic measurement errors on atmospheric CO2 inversions: a quantitative assessment. Atmos. Chem. Phys. 6, 149–161.
  • Rypdal, K. and Winiwarter, W. 2001. Uncertainties in greenhouse gas emission inventories—evaluation, comparability and implications. Environ. Sci. Policy 4, 107–116.
  • Schmidt, M., Graul, R., Sartorius, H. and Levin, I. 1996. Carbon dioxide and methane in continental Europe: a climatology, and 222Radon-based emission estimates. Tellus 48B, 457–473.
  • Stuiver, M. and Polach, H. 1977. Reporting of 14C data. Radiocarbon 19, 355–363.
  • Szegvary, T., Conen, E and Ciais, P. 2009. European 222Ril in-ventory for applied atmospheric studies. Atmos. Environ. 43, 1536-1539.
  • Thom, M., Bösinger, R., Schmidt, M. and Levin, I. 1993. The Regional Budget of Atmospheric Methane of a Highly Populated Area. Chemo-sphere 26, 143–160.
  • Tolk, L. E, Meesters, A., Dolman, A. J. and Peters, W. 2008. Modelling representation errors of atmospheric CO2 mixing ratios at a regional scale. Atmos. Chem. Phys. 8, 6587–6596.
  • Turnbull, J. C., Miller, J. B., Lehman, S. J., Tans, P. P., Sparks, R. J. and co-authors. 2006. Comparison of 14CO2, CO, and SF6 as tracers for recently added fossil fuel CO2 in the atmosphere and implications for biological CO2. Geophys. Res. Lett. 33.
  • UNFCCC 2009. United Nations Framework Convention on Cli-mate Change, national reports. Available at: http://unfccc.int/national_reports/items/1408.php.
  • Van Der Laan, S., Neubert, R. E. M. and Meijer, H. A. J. 2009a. A single gas chromatograph for atmospheric mixing ratio measurements of CO2, CH4, N20, SF6 and CO. Atmos. Meas. Tech. 2, 549–559.
  • Van Der Laan, S., Neubert, R. E. M. and Meijer, H. A. J. 2009b. Methane and nitrous oxide emissions in The Netherlands: ambient measurements support the national inventories. Atmos. Chem. Phys. 9, 9369–9379.
  • Van Der Laan, S. 2010. Validation of the Greenhouse Gas Balance of The Netherlands, Observational constraints on CO2, CH4 and N20 from atmospheric monitoring station Lutjewad. PhD thesis. Centre for Isotope Research, University of Groningen, Groningen, Netherlands.
  • Whittlestone, S. and Zahorowslci, W. 1998. Baseline radon detectors for shipboard use: development and deployment in the First Aerosol Characterization Experiment (ACE 1). J. Geophys. Res. 103(D13), 16743–16751.
  • Zondervan, A. and Meijer, H. A. J. 1996. Isotopic characterisation of CO2 sources during regional pollution events using isotopic and ra-diocarbon analysis. Tellus 48B, 601–612.