231
Views
16
CrossRef citations to date
0
Altmetric
Articles

Rapid changes in surface water carbonate chemistry during Antarctic sea ice melt

, , , , &
Pages 621-635 | Received 18 Dec 2009, Accepted 08 Jul 2010, Published online: 18 Jan 2017

References

  • Ackley, S. E and Sullivan, C. W. 1994. Physical controls on the development and characteristics of Antarctic sea-ice biolog-ical communities-a review and synthesis. Deep-Sea Res. I 41, 1583–1604.
  • Alvarez, M., Rios, A. E. and Roson, G. 2002. Spatio-temporal variability of air-sea fluxes of carbon dioxide and oxygen in the Bransfield and Gerlache Straits during Austral summer 1995-96. Deep-Sea Res. II 49, 643-662.
  • Anderson, L. A. and Sarmiento, J. L. 1994. Redfield Ratios of reminer-alization determined by nutrient data analysis. Global Biogeochem. Cycle 8, 65–80.
  • Ardelan, M. V., Holm-Hansen, O., Hewes, C. D., Reiss, C. S., Silva, N. S. and co-authors. 2010. Natural iron enrichment around the Antarctic Peninsula in the Southern Ocean. Biogeosciences 7, 11-25.
  • Bakker, D. C. E., de Baar, H. J. W. and Bathmann, U. V. 1997. Changes of carbon dioxide in surface waters during spring in the Southern Ocean. Deep-Sea Res. 11 44, 91-127.
  • Bakker, D.C.E., Hoppema, M., Schroder, M., Geibert, W. and de Baar, H. J. W. 2008. A rapid transition from ice covered CO2-rich waters to a biologically mediated CO2 sink in the eastern Weddell Gyre. Biogeosciences 5, 1373–1386.
  • Bellerby, R. G. J., Hoppema, M., Fahrbach, E., de Baar, H. J. W. and Stoll, M. H. C. 2004. Interannual controls on Weddell Sea surface water fCO2 during the autumn-winter transition phase. Deep-Sea Res. I 51, 793–808.
  • Blain, S., Queguiner, B., Armand, L., Belviso, S., Bombled, B. and co-authors. 2007. Effect of natural iron fertilization on carbon se-questration in the Southern Ocean. Nature 446, 1070-1075.
  • Brainerd, K. E. and Gregg, M. C. 1995. Surface mixed and mixing layer depths. Deep-Sea Res. 1 42, 1521-1543.
  • Buma, A. G. J., Gieskes, W. W. C. and Thomsen, H. A. 1992. Abun-dance of cryptophyceae and chlorophyll b containing organisms in the Weddell-Scotia Confluence area in the spring of 1988. Polar Biol. 12, 43–52.
  • Carmack, E. C. and Foster, T. D. 1975. Flow of water out of Weddell Sea. Deep-Sea Res. 22, 711–724.
  • Ciattaglia, L., Colombo, T. and Masarie, K. A. 1999. Continuous mea-surements of atmospheric CO2 at Jubany Station, Antarctica. Taus 51B, 713–721.
  • Comiso, J. C., McClain, C. R., Sullivan, C. W., Ryan, J. P. and Leonard, C. L. 1993. Coastal Zone Color Scanner pigment concentrations in the Southern Ocean and relationships to geophysical surface-features. J. Geophys. Res. 98, 2419-2451.
  • de Baar, H. J. W., Buma, A. G. J., Nolting, R. F., Cadee, G. C., Jacques, G. and co-authors 1990. On iron limitation of the Southern Ocean - experimental observations in the Weddell and Scotia Seas. Mar Ecol. Progr. Ser 65, 105-122.
  • Deacon, G. E. R. 1979. Weddell Gyre. Deep-Sea Res. 26, 981-995.
  • Delille, B., Jourdain, B., Borges, A. V., Tison, J. L. and Delille, D. 2007. Biogas (CO2,02, dimethylsulfide) dynamics in spring Antarctic fast ice. Limnol. Oceanogr. 52, 1367-1379.
  • Dickson, A. G. and Millero, F. J. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res. 34, 1733–1743.
  • Dickson, A. G. 1981. An exact definition of total alkalinity and a proce-dure for the estimation of alkalinity and total inorganic carbon from titration data. Deep-Sea Res. 28, 609–623.
  • DOE 2007. In: Guide to Best Practices for Ocean CO2 Measurements (eds A.G. Dickson, C.L. Sabine and J.R. Christian). PICES Special Publication 3,1–191.
  • Dieckmann, G. S., Nehrke, G., Papadimitriou S., Gottlicher, J., Steininger, R. and co-authors. 2008. Calcium carbonate as ilcaite crystals in Antarctic sea ice. Geophys. Res. Lett., 35. doi:10.1029/2008GL033540.
  • Dulaiova, H., Ardelan, M. V., Henderson, P. B. and Charette, M. A. 2009. Shelf-derived iron inputs drive biological productiv-ity in the southern Drake Passage. Global Biogeochem. Cycle 23, doi:10.1029/2008GB003406.
  • Friis, K., Körtzinger, A. and Wallace, D. W. R. 2003. The salinity nor-malization of marine inorganic carbon chemistry data. Geophys. Res. Lett. 30, doi:10.1029/2002GL015898.
  • GEBCO, 2001. General Bathymetric Chart of the Oceans Digital Atlas. British Oceanographic Data Centre, Liverpool, UK.
  • Gibson, J. A. E. and Trull, T. W. 1999. Annual cycle of CO2 under sea ice and in open water in Prydz Bay, east Antarctica. Mar Chem. 66, 187–200.
  • Gill, A. E. 1973. Circulation and bottom water production in Weddell Sea. Deep-Sea Res. 20, 111–140.
  • Gleitz, M., Grossmann, S., Scharek, R. and Smetacek, V. 1996. Ecology of diatom and bacterial assemblages in water associated with melt-ing summer sea ice in the Weddell Sea, Antarctica. Antarct. Sci. 8, 135–146.
  • Gleitz, M., Vonderloeff, M. R., Thomas, D. N., Dieckmann, G. S. and Millero, F. J. 1995. Comparison of summer and winter inorganic carbon, oxygen and nutrient concentrations in Antarctic sea ice brine. Mar Chem. 51, 81–91.
  • Gouretski, V. V. and Danilov, A. I. 1993. Weddell Gyre - structure of the eastern boundary. Deep-Sea Res. 1 40, 561-582.
  • Heinze, C., Maier-Reimer E. and Winn, K. 1991. GlacialpCO2 reduction by the World Ocean: experiements with the Hamburg carbon cycle model. Paleoceanography. 6, 395–430.
  • Helbling, E. W., Amos, A. F., Silva, N., Villafane, V. and Holm-Hansen, O. 1993. Phytoplankton distribution and abundance as related to a frontal system north of Elephant Island, Antarctica. Antarct. Sci. 5, 25-36.
  • Hewes, C. D., Reiss, C. S., Kahru, M., Mitchell, B. G. and Holm-Hansen, O. 2008. Control of phytoplankton biomass by dilution and mixed layer depth in the western Weddell-Scotia Confluence. Mar EcoL Prog. Ser 366, 15-29.
  • Holm-Hansen, O. and Hewes, C. D. 2004. Deep chlorophyll-a maxima (DCMs) in Antarctic waters-I. relationships between DCMs and the physical, chemical, and optical conditions in the upper water column. Polar Biology 27, 699-710.
  • Holm-Hansen, O. and Mitchell, B. G. 1991. Spatial and temporal dis-tribution of phytoplankton and primary production in the western Bransfield Strait region. Deep-Sea Res. A 38, 961-980.
  • Hoppema, M., de Baar, H. J. W., Fahrbach, E., Hellmer, H. H. and Klein, B. 2003. Substantial advective iron loss diminishes phytoplankton production in the Antarctic Zone. Global Biogeochem. Cycle. 17, doi:10.1029/2002GB001957.
  • Hoppema, M., Fahrbach, E., Schroder, M., Wisotzki, A. and de Baar, H. J. W. 1995. Winter-summer differences of carbon dioxide and oxygen in the Weddell Sea surface layer. Mar Chem. 51, 177–192.
  • Hoppema, M., Fahrbach, E., Stoll, M. H. C. and de Baar, H. J. W. 1999. Annual uptake of atmospheric CO2 by the Weddell Sea derived from a surface layer balance, including estimations of entrainment and new production. J. Mar Sys. 19, 219–233.
  • Hoppema, M., Stoll, M. H. C. and de Baar, H. J. W. 2000. CO2 in the Weddell Gyre and Antarctic Circumpolar Current: austral autumn and early winter. Mar Chem. 72, 203–220.
  • Ishii, M., Inoue, H. Y. and Matsueda, H. 2002. Net community produc-tion in the marginal ice zone and its importance for the variability of the oceanic pCO2 in the Southern Ocean south of Australia. Deep-Sea Res. 11 49, 1691-1706.
  • Ishii, M., Inoue, H.Y., Matsueda, H. and Tanoue, E. 1998. Close cou-pling between seasonal biological production and dynamics of dis-solved inorganic carbon in the Indian Ocean sector and the western Pacific Ocean sector of the Antarctic Ocean. Deep-Sea Res. I 45, 1187–1209.
  • Jacques, G. and Panouse, M. 1991. Biomass and composition of size fractionated phytoplankton in the Weddell—Scotia Confluence area. Polar Biol. 11, 315–328.
  • Jennings, J. C., Gordon, L. I. and Nelson, D. M. 1984. Nutrient depletion indicates high primary productivity in the Weddell Sea. Nature 309, 51–54.
  • Jouandet, M. P., Blain, S., Metzl, N., Brunet, C., Trull, T. W. and co-authors 2008. A seasonal carbon budget for a naturally iron-fertilised bloom over the Kerguelen Plateau in the Southern Ocean. Deep-Sea Res. 11 55, 856-867.
  • Johnson, K. M., Sieburth, J. M., Williams, P. J. L. and Brandstrom, L. 1987. Coulometric total carbon dioxide analysis for marine studies—automation and calibration. Mar Chem. 21, 117–133.
  • Kang, S. H., Kang, J. S., Lee, S., Chung, K. H., Kim, D. and co-authors 2001. Antarctic phytoplanlcton assemblages in the marginal ice zone of the northwestern Weddell Sea. J. Plankton Res. 23, 333-352.
  • Klatt, O., Roether, W., Hoppema, M., Bulsiewicz, K., Fleischmann, U. and co-authors. 2002. Repeated CFC sections at the Green-wich Meridian in the Weddell Sea. J. Geophys. Res. 107, doi:10.1029/2000JC000731.
  • Korb, R. E., Whitehouse, M. J., Thorpe, S. E. and Gordon, M. 2005. Primary production across the Scotia Sea in relation to the physico-chemical environment. J. Mar Sys. 57, 231–249.
  • Korb, R. E., Whitehouse, M. J., Gordon, M., Ward, P. and Poulton, A. J. 2010. Summer microplanlcton community structure across the Scotia Sea: implications for biological carbon export. Biogeosciences 7, 343-356.
  • Krembs, C. and Engel, A. 2001. Abundance and variability of microor-ganisms and transparent exopolymer particles across the ice-water interface of melting first-year sea ice in the Laptev Sea (Arctic). Mar Biol. 138, 173–185.
  • Lancelot, C., Mathot, S., Veth, C. and Debaar, H. 1993. Factors con-trolling phytoplanlcton ice edge blooms in the Marginal Ice Zone of the northwestern Weddell Sea during sea ice retreat 1988 -field observations and mathematical modelling. Polar Biol. 13, 377–387.
  • Lannuzel, D., Schoemann, V., de Jong, J., Chou, L., Delille, B. and co-authors. 2008. Iron study during a time series in the western Weddell pack ice. Mar Chem. 108, 85-95.
  • Lannuzel, D., Schoemann, V., de Jong, J., Tison, J. L. and Chou, L. 2007. Distribution and biogeochemical behaviour of iron in the East Antarctic sea ice. Mar Chem. 106, 18–32.
  • Lewis, E. and Wallace, D. W. R. 1998. CO2SYS-Program developed for the CO2 system calculations. Carbon Dioxide Inf. Anal. Centre. Report ORNL/CDIAC-105.
  • Löscher, B. M., de Baar, H. J. W., de Jong, J. T. M., Veth, C. and Dehairs, E 1997. The distribution of Fe in the Antarctic Circumpolar Current. Deep-Sea Res. 11 44, 143-187.
  • Marion, G. M. 2001. Carbonate mineral solubility at low tempera-tures in the Na K Mg Ca H Cl 504. OH HCO3-0O3-0O2-H20 sys-tem. Geochim. Cosmochim. Acta 65, 1883–1896.
  • Martin, J. H. 1990. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5, 1–13.
  • Mehrbach, C., Culberson, C. H., Hawley, J. E. and Pytkowicz, R. M. 1973. Measurement of the apparent dissociation constants of car-bonic acid in seawater at atmospheric pressure. LimnoL Oceanogr 18, 897–907.
  • Meiners, K. M., Papadimitriou, S., Thomas, D. N., Norman, L. and Dieckmann, G. S. 2009. Biogeochemical conditions and ice algal photosynthetic parameters in Weddell Sea ice during early spring. Polar Biol. 32, 1055–1065.
  • Minas, H. J. and Minas, M. 1992. Net community production in high nutrient-low chlorophyll waters of the tropical and Antarctic Oceans -grazing vs iron hypothesis. OceanoL Acta 15, 145–162.
  • Naveira Garabato, A. C., Heywood, K. J. and Stevens, D. P. 2002. Modification and pathways of Southern Ocean Deep Waters in the Scotia Sea. Deep-Sea Res. 1 49, 681-705.
  • Nomura, D., Inoue, H. Y. and Yoyota T. 2006. The effect of sea-ice growth on air-sea CO2 flux in a tank experiment. Tellus 58B, 418–426.
  • Nolting, R. F., de Baar, H. J. W., Vanbennekom, A. J. and Masson, A. 1991. Cadmium, copper and iron in the Scotia Sea, Weddell Sea and Weddell Scotia Confluence (Antarctica). Mar Chem. 35, 219–243.
  • Orsi, A. H., Johnson, G. C. and Bullister, J. L. 1999. Circulation, mix-ing, and production of Antarctic Bottom Water. Progr Oceanogr 43, 55–109.
  • Orsi, A. H., Whitworth, T. and Nowlin, W. D. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. 1 42, 641-673.
  • Papadimitriou, S., Kennedy, H., Kattner, G., Diecicmann, G. S. and Thomas, D. N. 2004. Experimental evidence for carbonate precipi-tation and CO2 degassing during sea ice formation. Geochim. Cos-mochim. Acta 68, 1749–1761.
  • Papadimitriou, S., Thomas, D. N., Kennedy, H., Haas, C., Kuosa, F. and co-authors. 2007. Biogeochemical composition of natural sea ice brines from the Weddell Sea during early austral summer. LimnoL Oceanogr 52, 1809–1823.
  • Parsons, T R., Maita, Y., Lalli, C. M. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford, 1-173.
  • Patterson, S. L. and Sievers, H. A. 1980. The Weddell—Scotia Conflu-ence. J. Phys. Oceanogr 10, 1584–1610.
  • Pollard, R. T., Lucas, M. I. and Read, J. F. 2002. Physical controls on biogeochemical zonation in the Southern Ocean. Deep-Sea Res. 11 49, 3289-3305.
  • Pondaven, P., Ragueneau, O., Treguer, R, Hauvespre, A., Dezileua, L. and co-authors. 2000. Resolving the ‘opal paradox’ in the Southern Ocean. Nature 405, 168-172.
  • Redfield, A. C., Ketchum, B. H. and Richards, E A. 1963. The influence of organisms on the composition of seawater. In: The Sea. Vol.2. The Composition of Seawater (ed. M.N. Hill). Wiley, New York, 26–77.
  • Revelle, R. and Suess, H. E. 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9, 18–27.
  • Rintoul, S. R. and Sokolov, S. 2001. Baroclinic transport variability of the Antarctic Circumpolar Current south of Australia (VVOCE repeat section 5R3). J. Geophys. Res. 106, 2815–2832.
  • Rubin, S I., Takahashi, T., Chipman, D. W. and Goddard, J. G. 1998. Primary productivity and nutrient utilization ratios in the Pacific sec-tor of the Southern Ocean based on seasonal changes in seawater chemistry. Deep-Sea Res. 1 45, 1211-1234.
  • Rysgaard, S., Glud, R. N., Sejr, M. K., Bendtsen, J. and Chris-tensen, P. B. 2007. Inorganic carbon transport during sea ice growth and decay: a carbon pump in polar seas. J. Geophys. Res. 112, doi:10.1029/2006JC003572.
  • Rysgaard, S., Bendtsen, J., Pedersen, L. T., Ramlov, H. and Glud, R. N. 2009. Increased CO2 uptake due to sea ice growth and decay in Nordic Seas. J. Geophys. Res. 114, doi:10.1029/2008JC005088.
  • Sakshaug, E., Slagstad, D. and Holm-Hansen, O. 1991. Factors control-ling the development of phytoplanlcton blooms in the Antarctic Ocean - a mathematical model. Mar Chem. 35, 259-271.
  • Sanudo-Wilhelmy, S. A., Olsen, K. A., Scelfo, J. M., Foster, T. D. and Flegal, A. R. 2002. Trace metal distributions off the Antarctic Peninsula in the Weddell Sea. Mar Chem. 77, 157–170.
  • Schroder, M. and Fahrbach, E. 1999. On the structure and the transport of the eastern Weddell Gyre. Deep-Sea Res. 11 46, 501-527.
  • Schuster, U. and Watson, A. J. 2007. A variable and decreasing sink for atmospheric CO2 in the North Atlantic. J. Geophys. Res. 112, doi:10.1029/2006JC003941.
  • Sedwick, P. N. and DiTullio, G. R. 1997. Regulation of algal blooms in Antarctic shelf waters by the release of iron from melting sea ice. Geophys. Res. Lett. 24,2515–2518.
  • Shim, J., Kang, Y. C., Kim, D. and Choi, S.-H. 2006. Distribution of net community production and surfacepCO2 in the Scotia Sea, Antarctica, during austral spring 2001. Mar Chem. 101, 68–84.
  • Sievers, H. A. and Nowlin, W. D. 1984. The stratification and water masses at Drake Passage. J. Geophys. Res. 89,489–514.
  • Smith, W. O. and Nelson, D. M. 1985. Phytoplanlcton bloom produced by a receding ice edge in the Ross Sea-spatial coherence with the density field. Science 227, 163-166.
  • Smith, W. O. and Nelson, D. M. 1986. Importance of ice edge phyto-plankton production in the Southern Ocean. Bioscience 36, 251-257.
  • Stark, J. D., Donlon, C. J., Martin, M. J. and McCulloch, M. E. 2007. OSTIA: an operational, high resolution, real time, global sea surface temperature analysis system. In: Marine Challenges: Coastline to Deep Sea. Conference proceedings. Oceans '07 IEEE Aberdeen.
  • Stoll, M. H. C., de Baar, H. J. W., Hoppema, M. and Fahrbach, E. 1999. New early winter fCO2 data reveal continuous uptake of CO2 by the Weddell Sea. Tellus 51B, 679-687.
  • Stoll, M. H. C., Thomas, H., de Baar, H. J. W., Zondervan, I., de Jong, E. and co-authors. 2002. Biological versus physical processes as drivers of large oscillations of the air-sea CO2 flux in the Antarctic marginal ice zone during summer. Deep-Sea Res. 1 49, 1651-1667.
  • Sweeney, C., Smith, W O., Hales, B., Bidigare, R. R., Carlson, C. A. and co-authors. 2000. Nutrient and carbon removal ratios and fluxes in the Ross Sea, Antarctica. Deep-Sea Res. 11 47, 3395-3421.
  • Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W. and Suther-land, S. C. 1993. Seasonal variation of CO2 and nutrients in the high latitude surface oceans-a comparative-Study. Global Biogeochem. Cycle 7, 843–878.
  • Takahashi, T., Sutherland, S. C., Wanninlchof, R., Sweeney, C., Feely, R. A. and co-authors. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res. 11 56, 554-577.
  • Tynan, C. T. 1998. Ecological importance of the Southern Boundary of the Antarctic Circumpolar Current. Nature 392, 708–710.
  • Weiss, R. F., Ostlund, H. G. and Craig, H. 1979. Geochemical studies of the Weddell Sea. Deep-Sea Res. 26, 1093–1120.
  • Whitehouse, M. J., 1997. Automated Seawater Nutrient Chemistry. British Antarctic Survey, Cambridge, 1–14.
  • Whitehouse, M. J., Korb, R. E., Atkinson, A., Thorpe, S. E. and Gordon, M. 2008. Formation, transport and decay of an intense phytoplankton bloom within the high-nutrient low-chlorophyll belt of the Southern Ocean. J. Mar Sys. 70, 150–167.
  • Whitworth, T. and Nowlin, W. D. 1987. Water masses and currents of the Southern Ocean at the Greenwich Meridian. J. Geophys. Res. 92, 6462–6476.
  • Whitworth, T., Nowlin, W. D., Orsi, A. H., Locarnini, R. A. and Smith, S. G. 1994. Weddell Sea shelf water in the Bransfield Strait and Weddell-Scotia Confluence. Deep-Sea Res. 1 41, 629-641.
  • Zeebe, R. E. and Wolf-Gladrow, D. A. 2001. Equilibrium. In: CO2 in Seawater: Equilibrium, Kinetics, Isotopes (ed.D. Halpern). Elsevier, Amsterdam, 1-83.