1,768
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Amount and timing of permafrost carbon release in response to climate warming

, , &
Pages 168-180 | Received 31 Dec 2009, Accepted 05 Jan 2011, Published online: 18 Jan 2017

References

  • Anisimov, O. A. 2007. Potential feedback of thawing permafrost to the global climate system through methane emission. Env. Res. Lett. 2, doi:10.1088/1748-9326/2/4/045016.
  • Ball, J. T. 1988. An Analysis of Stomatal Conductance, PhD Thesis, Stanford University.
  • Bonan, G. B. 1996. A Land Surface Model (LSM Version 1.0) for eco-logical, hydrological, and atmospheric studies: technical description and users guide. NCAR Technical Note NCARTIN-417±STR, Boul-der, Colorado.
  • Brown, J., Ferrians Jr., O. J., Heginbottom, J. A. and Melnikov, E. S. 1998. Circum-Arctic Map of Permafrost and Ground-Ice Conditions ( revised February 2001). National Snow and Ice Data Center/World Data Center for Glaciology, Boulder, CO, Digital Media.
  • Brown, J., Hinkel, K. M. and Nelson F. E. 2000. The circumpolar ac-tive layer monitoring (CALM) program: research designs and initial results. Polar Geog. 24, 165–258.
  • Cheng, G. and Wu, T. 2007. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J. Geo-phys. Res. 112, doi:10.1029/2006JF000631.
  • Collatz, G. J., Ball, J. T., Grivet, C. and Berry, J. A. 1991. Physiological and environmental regulation of stomatal conductance, photosynthe-sis, and transpiration: a model that includes a laminar boundary layer. Agric. Forest MeteoroL 54, 107–136.
  • Collatz, G. J., Ribascarbo, M. and Berry, J. A. 1992. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust. J. Plant PhysioL 19, 519–538.
  • Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., and co-authors. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biol. 7, 357-373.
  • Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G., and co-authors. 2003. The common land model. Bull. Am. MeteoroL Soc. 84, 1013-1023.
  • Dunn, A. L., Barford, C. C., Wofsy, S. C., Goulden, M. L. and Daube, B. C. 2007. A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends. Global Change Biol. 13 (3), 577–590.
  • Dutta, K., Schuur, E. A. G., Neff, J. C. and Zimov, S. A. 2006. Potential carbon release from permafrost soils of Northeastern Siberia. Global Change Biol. 12, 2336–2351.
  • Eliseev, A. V., Arzhanov, M. M., Demchenlco, P. F. and Mokhov, I. I. 2009. Changes in climatic characteristics of Northern Hemisphere extratropical land in the 21st century: assessments with the TAP RAS climate model. Izvestiya Atmos. Ocean Phys. 45 (3), 271–283.
  • Euslcirchen E. S., McGuire A. D., Kicklighter D. W., Zhuang Q., Clein J. S., and co-authors. 2006. Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon seques-tration in terrestrial high-latitude ecosystems. Global Change Biol. 12 (4), 731-750.
  • Farquhar, G. D., von Caemmerer, S. and Berry, J. A. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta. 149, 78–90.
  • Fischer, H., Wahlen, M., Smith, J., Mastroianni, D. and Deck, B. 1999. Ice core records of atmospheric CO2 around the last three glacial terminations. Science 283, 1712–1714.
  • Frauenfeld, O. W., Zhang, T., Barry, R. G. and Gilichinsky, D. 2004. Interdecadal changes in seasonal freeze and thaw depths in Russia. J. Geophys. Res. 109, doi:10.1029/2003JDO04245.
  • Friedlingstein, R, Cox, P., Betts, R., Bopp, L., Von Bloh, W., and co-authors. 2006. Climate-carbon cycle feedback analysis: results from the (CMIP)-M-4 model intercomparison. J. Clim. 19, 3337-3353.
  • Indermuhle, A., Stocker, T. F., Joos, F., Fischer, H., Smith, H. J., and co-authors. 1999. Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398, 121-126.
  • IPCC. 2007. Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group Ito the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, and co-authors). Cambridge University Press, Cambridge, UK and New York, NY, USA.
  • Jorgenson, M. T. and Osterlcamp, T. E. 2005. Response of boreal ecosys-tems to varying modes of permafrost degradation. Can. J. Forest Res. 35, 2100–2111.
  • Khvorostyanov, D. V., Ciais, P., Krinner, G. and Zimov, S. A. 2008. Vulnerability of east Siberia's frozen carbon stores to future warming. Geophys. Res. Lett. 35, doi:10.1029/2008GL033639.
  • Kicklighter, D. W., Bruno, M., Donges, S., Esser, G., Heimann, M., and co-authors. 1999. A first-order analysis of the potential role of CO2 fertilization to affect the global carbon budget: a comparison of four terrestrial biosphere models. Tellus 51B, 343-366.
  • Lawrence, D. M. and Slater, A. G. 2005. A projection of severe near-surface permafrost degradation during the 21st century. Geophys. Res. Lett. 32, doi:10.1029/2005GL025080.
  • Lawrence, D. M. and Slater, A. G. 2010. The contribution of snow condition trends to future ground climate. Clim. Dyn. 34(7-8), 969–981.
  • Lawrence, D. M., Slater, A. G., Romanovsky, V. E., Nicolsky, D. J. 2008. Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter. J. Geophys. Res. 113, F02011, doi:10.1029/2007JF000883.
  • Lemke, P., Ren, J., Alley, R. B., Allison, I., Carrasco, J., and co-authors. 2007. Observations: changes in snow, ice and frozen ground. In: Climate Change 2007: The Physical Science Basis. Contribution of Work-ing Group Ito the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, and co-authors). Cambridge University Press, Cambridge, UK and New York, NY, USA.
  • Ling, F. and Zhang, T. 2004. A numerical model for surface energy bal-ance and thermal regime of the active layer and permafrost containing unfrozen water. Cold Regions Sci. Tech. 38, 1–15.
  • Marchenlco, S., Romanovsky, V. and Tipenlco, G. 2008. Numer-ical modeling of spatial permafrost dynamics in Alaska. Pro-ceedings, Ninth International Conference on Permafrost. 2, 1125–1130.
  • Masarie, K.A. and Tans, P. P. 1995. Extension and integration of atmo-spheric carbon dioxide data into a globally consistent measurement record. J. Geophys. Res. 100, 11593–11610.
  • Matthews, E. and Fung, I. 1987. Methane emission from natural wet-lands: global distribution, area, and environmental characteristics of sources. Global Biogeochem. Cycles 1, 61–86.
  • Nakicenovic, N. et al. 2000. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 599.
  • Nan, Z., Gao, Z., Li, S. and Wu, T. 2003. Permafrost changes in the northern limit of permafrost on the Qinghai-Tibet Plateau in the last 30 years. Acta Geogr. Sin. 58, 817–823.
  • Oleson, K. W., Dai, Y., Bonan, G., Bosilovich, M., Dickinson, R., and co-authors. 2004. Technical description of the Community Land Model (CLM). NCAR Tech. Note, TN-461±STR, 174 pp.
  • Osterkamp, T. E. 2007. Characteristics of the recent warming of permafrost in Alaska. J. Geophys. Res. 112, doi:10.1029/2006JF0005788.
  • Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., and co-authors. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429-436.
  • Ping, C. L., Michaelson, G. J., Jorgenson, M. T., Kimble, J. M., Epstein, H., and co-authors. 2008. High stocks of soil organic carbon in the North American Arctic region. Nat. Geosci. 1, 615-619.
  • Qian, H., Joseph, R. and Zeng, N. 2010. Enhanced terrestrial carbon uptake in the Northern High Latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections. Global Change Biol. 16, 641–656, doi:10.1111/j.1365-2486.2009.01989.x.
  • Saito, K., Kimoto, M., Zhang, T., Takata, K. and Emori, S. 2007. Evaluat-ing a high-resolution climate model: simulated hydrothermal regimes in frozen ground regions and their change under the global warming scenario. J. Geophys. Res. 112, doi:10.1029/2006JF000577.
  • Schaefer, K., Collatz, G. J., Tans, P., Denning, A. S., Baker, I., and co-authors. 2008. The combined Simple Biosphere/Carnegie-Ames-Stanford Approach (SiBCASA) Model. J. Geophys. Res. 113, doi:10.1029/2007JG000603.
  • Schaefer, K., Zhang, T., Slater, A. G., Lu, L., Etringer, A. and Baker, I. 2009. Improving simulated soil temperatures and soil freeze/thaw at high-latitude regions in the Simple Biosphere/Carnegie-Ames-Stanford Approach model. J. Geophys. Res. 114, doi:10.1029/2008JF001125.
  • Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euslcirchen, E., Field, C. B., and co-authors. 2008. Vulnerability of permafrost carbon to climate change. Implicat. Global Carbon Cycle 58 (8), 701-714.
  • Schuur, E. A. G., Vogel, J. G., Crummer, K. G., Lee, H., Sideman, J. O., and co-authors. 2009. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, doi:10.1038/nature08031.
  • Sellers, P. J., Tucker, C. J., Collatz, G. J., Los, S. O., Justice, and co-authors. 1994. A global 1° by 1° NDVI data set for climate studies, part II: the generation of global fields of terrestrial biophysical parameters from NDVI. Int. J. Remote Sens. 15, 3519-3545.
  • Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B., and co-authors. 1996a. A revised land surface parameterization of GCMs, part I: model formulation. J. Clim. 9, 676-705.
  • Sellers, P. J., Los, SO., Tucker, C. J., Justice, C. O., Dazlich, D. A., and co-authors. 1996b. A revised land surface parameterization of GCMs, part II: the generation of global fields of terrestrial biophysical parameters from satellite data. J. Clim. 9, 706-737.
  • Smith, N. V, Saatchi, S. S. and Randerson, T. 2004. Trends in high latitude soil freeze and thaw cycles from 1988 to 2002. J. Geophys. Res. 109, doi:10.1029/2003JD004472.
  • Smith, L. C., Sheng, Y., MacDonald, G. M. and Hinzman, L. D. 2005. Disappearing Arctic lakes. Science 308, 1429.
  • Sushama, L., Laprise, R., Caya, D., Verseghy, D., Allard, M. 2007. An RCM projection of soil thermal and moisture regimes for North American permafrost zones. Geophys. Res. Lett. 34, doi:10.1029/2007GL031385.
  • Tarnocai, C. 1997. The amount of organic carbon in various soil orders and ecological provinces in Canada. In: Soil Processes and the Carbon Cycle (eds R. Lal, J. M. Kimble, R.L.F. Follett and B.A. Stewart). Advances in Soil Science, CRC Press, New York, pp. 81-92.
  • Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, R, Mazhitova, G. and Zimov, S. 2009. Soil organic carbon pools in the north-ern circumpolar permafrost region. Global Biogeochem. Cycles 23, doi:10.1029/2008GB003327.
  • Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D. A., Pak, E. W., and co-authors. 2005. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 26, 4485-4498.
  • Uppala, S. M., Kallberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D., and co-authors. 2005. The ERA-40 re-analysis. Q. J. R. MeteoroL Soc. 131B, 2961-3012.
  • Vidale, P. L. and Stockli, R. 2005. Prognostic canopy air space solutions for land surface exchanges. Theor AppL Climatol. 80, 245–257.
  • Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D. and Chapin, E S. 2006. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443, 71–75.
  • Wu, Q. B. and Zhang, T. J. 2008. Recent permafrost warm-ing on the Qinghai-Tibetan plateau. J. Geophys. Res. 113, doi:10.1029/2007JD009539.
  • Wu, Q. and T. Zhang 2010. Changes in active layer thickness over the Qinghai Tibetan Plateau from 1995 to 2007. J. Geophys. Res. 115, D09107, doi:10.1029/2009JD012974.
  • Zech, M., Zech, R., Zech, W., Glaser, B., Brodowski, S. and Amelung, W. 2008. Characterisation and palaeoclimate of a loess-like permafrost palaeosol sequence in NE Siberia. Geoderma 143, 281–295.
  • Zhang, Y., Chen, W. J. and Riseborough, D. W. 2008a. Transient pro-jections of permafrost distribution in Canada during the 21st century under scenarios of climate change. Global Planet. Change, 60(3-4), 443–456.
  • Zhang, Y., Chen, W. J. and Riseborough, D. W. 2008b. Disequilib-rium response of permafrost thaw to climate warming in Canada over 1850-2100. Geophys. Res. Lett. 35, doi:10.1029/2007GL032117.
  • Zhang, C., Dazlich, D. A., Randall, D.A., Sellers, P. J. and Denning, A. S. 1996. Calculation of the global land surface energy, water, and CO2 fluxes with an off-line version of SiB2. J. Geophys. Res. 101, 19061–19075.
  • Zhang, T., Barry, R. G., Knowles, K., Heginbottom, J. A. and Brown, J. 1999. Statistics and characteristics of permafrost and ground ice dis-tribution in the Northern Hemisphere. Polar Geogr. 23 (2), 147–169.
  • Zhang, T., Frauenfeld, O. W., Serreze, M. C., Etringer, A., Oelke, C., and co-authors. 2005. Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. J. Geophys. Res. 110, doi:10.1029/2004JD005642.
  • Zimov, S. A., Davydov, S. P., Zimova, G. M., Davydova, A. I., Schuur, E. A. G., and co-authors. 2006a. Permafrost carbon: stock and decom-posability of a globally significant carbon pool. Geophys. Res. Lett. 33, doi:10.1029/2006GL027484.
  • Zimov, S. A., Schuur, E. A. G. and Chapin, F. S. 2006b. Permafrost and the global carbon budget. Science 312, 1612–1613.