959
Views
20
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE/SHORT PAPER

Exogenous application of 5-aminolevulinic acid increases the transcript levels of sulfur transport and assimilatory genes, sulfate uptake, and cysteine and glutathione contents in Arabidopsis thaliana

, , &
Pages 281-288 | Received 06 Aug 2009, Accepted 11 Jan 2010, Published online: 21 Dec 2010

References

  • Askira , Y , Rubin , B and Rabinowitch , HD . 1991 . Differential response to the herbicidal activity of δ-aminolevulinic acid in plant with high and low sod activity . Free Radic. Res. Commun , 12-13 : 837 – 843 .
  • Chakraborty , N and Tripathy , BC . 1992 . Involvement of singlet oxygen in 5-aminolevulinic acid-induced photodynamic damage of cucumber (Cucumis sativus L.) chloroplasts . Plant Physiol. , 98 : 7 – 11 .
  • Crawford , NM , Kahn , ML , Leustek , T and Long , SR . 2000 . “ Nitrogen and sulfur ” . In Biochemistry & Molecular Biology of Plants , Edited by: Buchanan , BB , Gruissem , W and Jones , RL . 824 – 849 . Rockville, MD : American Society of Plant Biologists .
  • Foyer , CH , Theodoulou , FL and Delrot , S . 2001 . The functions of inter- and intracellular glutathione transport systems in plants . Trends Plant Sci. , 6 : 486 – 492 .
  • Gutierrez-Marcos , JF , Roberts , MA , Campbell , EI and Wray , JL . 1996 . Three members of a novel small gene-family from Arabidopsis thalianaable to complement functionally an Escherichia colimutant defective in PAPS reductase activity encode proteins with a thioredoxin-like domain and “APS reductase” activity . Proc. Natl Acad. Sci. USA , 93 : 13377 – 13382 .
  • Herschbach , C , Jouanin , L and Rennenberg , H . 1998 . Overexpression of {gamma}-glutamylcysteine synthetase, but not of glutathione synthetase, elevates glutathione allocation in the phloem of transgenic poplar trees . Plant Cell Physiol. , 39 : 447 – 451 .
  • Hicks , LM , Cahoon , RE , Bonner , ER , Rivard , RS , Sheffield , J and Jez , JM . 2007 . Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana . Plant Cell , 19 : 2653 – 2661 .
  • Hirai , MY , Fujiwara , T , Awazuhara , M , Kimura , Y , Noji , M and Saito , K . 2003 . Global expression profiling of sulfur-starved Arabidopsisby DNA macroarray reveals the role of O-acetyl-L-serine as a general regulator of gene expression in response to sulfur nutrition . Plant J. , 33 : 651 – 663 .
  • Hirai , MY , Fujiwara , T , Chino , M and Naito , S . 1995 . Effects of sulfate concentrations on the expression of a soybean seed storage protein gene and its reversibility in transgenic Arabidopsis thaliana . Plant Cell Physiol. , 36 : 1331 – 1339 .
  • Hotta , Y , Tanaka , T , Takaoka , H , Takeuchi , Y and Konnai , M . 1997a . New physiological effects of 5-aminolevulinic acid in plants: The increase of photosynthesis, chlorophyll content, and plant growth . Biosci. Biotechnol. Biochem. , 61 : 2025 – 2028 .
  • Hotta , Y , Tanaka , T , Takaoka , H , Takeuchi , Y and Konnai , M . 1997b . Promotive effects of 5-aminolevulinic acid on the yield of several crops . Plant Growth Regul. , 22 : 109 – 114 .
  • Kataoka , T , Watanabe-Takahashi , A Hayashi , N . 2004 . Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis . Plant Cell , 16 : 2693 – 2704 .
  • Kawashima , CG , Berkowitz , O , Hell , R , Noji , M and Saito , K . 2005 . Characterization and expression analysis of a serine acetyltransferase gene family involved in a key step of the sulfur assimilation pathway in Arabidopsis . Plant Physiol. , 137 : 220 – 230 .
  • Kittsteiner , U , Mostowska , A and Redinger , W . 1991 . The greening process in cress seedlings. I. Pigment accumulation and ultrastructure after application of 5-aminolevulinate and complexing agents . Physiol. Plant. , 81 : 139 – 147 .
  • Kopriva , S , Muheim , R Koprivova , A . 1999 . Light regulation of assimilatory sulphate reduction in Arabidopsis thaliana . Plant J. , 20 : 37 – 44 .
  • Koprivova , A , North , KA and Kopriva , S . 2008 . Complex signaling network in regulation of adenosine 5′-phosphosulfate reductase by salt stress in Arabidopsis roots . Plant Physiol. , 146 : 1408 – 1420 .
  • Koprivova , A , Suter , M , Op den Camp , R , Brunold , C and Kopriva , S . 2000 . Regulation of sulfur assimilation by nitrogen in Arabidopsis . Plant Physiol. , 122 : 737 – 746 .
  • Kumaran , S , Yi , H , Krishnan , HB and Jez , JM . 2009 . Assembly of the cysteine synthase complex and the regulatory role of protein-protein interactions . J. Biol. Chem. , 284 : 10268 – 10275 .
  • Lappartient , AG , Vidmar , JJ , Leustek , T , Glass , ADM and Touraine , B . 1999 . Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound . Plant J. , 18 : 89 – 95 .
  • Leustek , T , Martin , MN , Bick , J and Davies , JP . 2000 . Pathways and regulation of sulfur metabolism revealed through molecular genetic studies . Annu. Rev. Plant Physiol. Plant Mol. Biol. , 51 : 141 – 166 .
  • Li , Y , Dankher , OP , Carreira , L , Smith , AP and Meagher , RB . 2006 . The shoot-specific expression of gamma-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic . Plant Physiol. , 141 : 288 – 298 .
  • Maruyama-Nakashita , A , Nakamura , Y , Yamaya , T and Takahashi , H . 2004a . A novel regulatory pathway of sulfate uptake in Arabidopsisroots: implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation . Plant J. , 38 : 779 – 789 .
  • Maruyama-Nakashita , A , Nakamura , Y , Yamaya , T and Takahashi , H . 2004b . Regulation of high-affinity sulfate transporters in plants: towards systematic analysis of sulfur signaling and regulation . J. Exp. Bot. , 55 : 1843 – 1849 .
  • Mishra , SN and Srivastava , HS . 1983 . Stimulation of nitrate reductase activity by delta amino levulinic acid in excised maize leaves . Cell. Mol. Life Sci. , 39 : 1118 – 1120 .
  • Noctor , G and Foyer , CH . 1998 . ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control . Annu. Rev. Plant Physiol. Plant Mol. Biol. , 49 : 249 – 279 .
  • Noctor , G , Gomez , L , Vanacker , H and Foyer , CH . 2002 . Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling . J. Exp. Bot. , 53 : 1283 – 1304 .
  • Rauser , WE , Schupp , R and Rennenberg , H . 1991 . Cysteine, {gamma}-glutamylcysteine, and glutathione levels in maize seedlings. Distribution and translocation in normal and cadmium-exposed plants . Plant Physiol. , 97 : 128 – 138 .
  • Rebeiz , CA , Reddy , KN , Nandihalli , UB and Velu , J . 1990 . Tetrapyrrole-dependent photodynamic herbicides . Photochem. Photobiol. , 52 : 1099 – 1117 .
  • Saito , K . 2004 . Sulfur assimilatory metabolism. The long and smelling road . Plant Physiol. , 136 : 2443 – 2450 .
  • Shibagaki , N , Rose , A McDermott , JP . 2002 . Selenate-resistant mutants of Arabidopsis thalianaidentify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots . Plant J. , 29 : 475 – 486 .
  • Smith , FW , Ealing , PM , Hawkesford , MJ and Clarkson , DT . 1995 . Plant members of a family of sulfate transporters reveal functional subtypes . Proc. Natl Acad. Sci. USA , 92 : 9373 – 9377 .
  • Smith , FW , Hawkesford , MJ Ealing , PM . 1997 . Regulation of expression of a cDNA from barley roots encoding a high affinity sulfate transporter . Plant J. , 12 : 875 – 884 .
  • Takahashi , H , Watanabe-Takahashi , A , Smith , FW , Blake-Kalff , M , Hawkesford , MJ and Saito , K . 2000 . The roles of three functional sulfate transporters involved in uptake and translocation of sulfate in Arabidopsis thaliana . Plant J. , 23 : 171 – 182 .
  • Takahashi , H , Yamazaki , M Sasakura , N . 1997 . Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate starved roots plays a central role in Arabidopsis thaliana . Proc. Natl Acad. Sci. USA , 94 : 11102 – 11107 .
  • Tanaka , T , Iwai , K , Watanabe , K and Hotta , Y . 2005 . Development of 5-aminolevulinic acid for agricultural uses . Regul. Plant Growth Dev. , 40 : 22 – 29 .
  • Tausza , M , Pilcha , B , Rennenberg , H , Grilla , D and Herschbach , C . 2004 . Root uptake, transport, and metabolism of externally applied glutathione in Phaseolus vulgaris seedlings . J. Plant Physiol. , 161 : 347 – 349 .
  • Vauclare , P , Kopriva , S Fell , D . 2002 . Flux control of sulphate assimilation in Arabidopsis thaliana: adenosine 5′-phosphosulphate reductase is more susceptible than ATP sulphurylase to negative control by thiols . Plant J. , 31 : 729 – 740 .
  • Vidmar , JJ , Tagmount , A , Cathala , N , Touraine , B and Davidian , JCE . 2000 . Cloning and characterization of a root specific high-affinity sulfate transporter from Arabidopsis thaliana . FEBS Lett. , 475 : 65 – 69 .
  • Wang , R , Okamoto , M , Xing , X and Crawford , N . 2003 . Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism . Plant Physiol. , 132 : 556 – 567 .
  • Wirtz , M and Hell , R . 2007 . Dominant-negative modification reveals the regulatory function of the multimeric cysteine synthase protein complex in transgenic tobacco . Plant Cell , 19 : 625 – 639 .
  • Yoshimoto , N , Inoue , E , Watanabe-Takahashi , A , Saito , K and Takahashi , H . 2007 . Posttranscriptional regulation of high-affinity sulfate tansporters in Arabidopsis by sulfur nutrition . Plant Physiol. , 145 : 378 – 388 .
  • Yoshimoto , N , Takahashi , H , Smith , FW , Yamaya , T and Saito , K . 2002 . Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsisroots . Plant J. , 29 : 465 – 473 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.