41
Views
17
CrossRef citations to date
0
Altmetric
Article

Spindle Checkpoint Factors Bub1 and Bub2 Promote DNA Double-Strand Break Repair by Nonhomologous End Joining

, , , , , , , , , , , , , , , , , , , & show all
Pages 2448-2463 | Received 05 Jan 2015, Accepted 29 Apr 2015, Published online: 20 Mar 2023

REFERENCES

  • Lieber MR. 2010. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211. http://dx.doi.org/10.1146/annurev.biochem.052308.093131.
  • Li X, Heyer WD. 2008. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18:99–113. http://dx.doi.org/10.1038/cr.2008.1.
  • Dudas A, Chovanec M. 2004. DNA double-strand break repair by homologous recombination. Mutat Res 566:131–167. http://dx.doi.org/10.1016/j.mrrev.2003.07.001.
  • Yano K, Morotomi-Yano K, Adachi N, Akiyama H. 2009. Molecular mechanism of protein assembly on DNA double-strand breaks in the non-homologous end-joining pathway. J Radiat Res 50:97–108. http://dx.doi.org/10.1269/jrr.08119.
  • Lisby M, Rothstein R. 2009. Choreography of recombination proteins during the DNA damage response. DNA Repair (Amst) 8:1068–1076. http://dx.doi.org/10.1016/j.dnarep.2009.04.007.
  • van Gent DC, Hoeijmakers JH, Kanaar R. 2001. Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2:196–206. http://dx.doi.org/10.1038/35056049.
  • Daley JM, Palmbos PL, Wu D, Wilson TE. 2005. Nonhomologous end joining in yeast. Annu Rev Genet 39:431–451. http://dx.doi.org/10.1146/annurev.genet.39.073003.113340.
  • Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S. 2006. Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair (Amst) 5:1021–1029. http://dx.doi.org/10.1016/j.dnarep.2006.05.022.
  • Chen L, Trujillo K, Ramos W, Sung P, Tomkinson AE. 2001. Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes. Mol Cell 8:1105–1115. http://dx.doi.org/10.1016/S1097-2765(01)00388-4.
  • Palmbos PL, Wu D, Daley JM, Wilson TE. 2008. Recruitment of Saccharomyces cerevisiae Dnl4-Lif1 complex to a double-strand break requires interactions with Yku80 and the Xrs2 FHA domain. Genetics 180:1809–1819. http://dx.doi.org/10.1534/genetics.108.095539.
  • Shim EY, Ma JL, Oum JH, Yanez Y, Lee SE. 2005. The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks. Mol Cell Biol 25:3934–3944. http://dx.doi.org/10.1128/MCB.25.10.3934-3944.2005.
  • Jessulat M, Alamgir M, Salsali H, Greenblatt J, Xu J, Golshani A. 2008. Interacting proteins Rtt109 and Vps75 affect the efficiency of non-homologous end-joining in Saccharomyces cerevisiae. Arch Biochem Biophys 469:157–164. http://dx.doi.org/10.1016/j.abb.2007.11.001.
  • van Attikum H, Fritsch O, Hohn B, Gasser SM. 2004. Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119:777–788. http://dx.doi.org/10.1016/j.cell.2004.11.033.
  • Lee JH, Paull TT. 2007. Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene 26:7741–7748. http://dx.doi.org/10.1038/sj.onc.1210872.
  • Stracker TH, Usui T, Petrini JH. 2009. Taking the time to make important decisions: the checkpoint effector kinases Chk1 and Chk2 and the DNA damage response. DNA Repair (Amst) 8:1047–1054. http://dx.doi.org/10.1016/j.dnarep.2009.04.012.
  • Bloom J, Cross FR. 2007. Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol 8:149–160. http://dx.doi.org/10.1038/nrm2105.
  • Marcotte R, Brown KR, Suarez F, Sayad A, Karamboulas K, Krzyzanowski PM, Sircoulomb F, Medrano M, Fedyshyn Y, Koh JL, van Dyk D, Fedyshyn B, Luhova M, Brito GC, Vizeacoumar FJ, Vizeacoumar FS, Datti A, Kasimer D, Buzina A, Mero P, Misquitta C, Normand J, Haider M, Ketela T, Wrana JL, Rottapel R, Neel BG, Moffat J. 2012. Essential gene profiles in breast, pancreatic, and ovarian cancer cells. Cancer Discov 2:172–189. http://dx.doi.org/10.1158/2159-8290.CD-11-0224.
  • Fraschini R, Formenti E, Lucchini G, Piatti S. 1999. Budding yeast Bub2 is localized at spindle pole bodies and activates the mitotic checkpoint via a different pathway from Mad2. J Cell Biol 145:979–991. http://dx.doi.org/10.1083/jcb.145.5.979.
  • Zich J, Hardwick KG. 2010. Getting down to the phosphorylated ‘nuts and bolts’ of spindle checkpoint signalling. Trends Biochem Sci 35:18–27. http://dx.doi.org/10.1016/j.tibs.2009.09.002.
  • Kim EM, Burke DJ. 2008. DNA damage activates the SAC in an ATM/ATR-dependent manner, independently of the kinetochore. PLoS Genet 4:e1000015. http://dx.doi.org/10.1371/journal.pgen.1000015.
  • Yang C, Wang H, Xu Y, Brinkman KL, Ishiyama H, Wong ST, Xu B. 2012. The kinetochore protein Bub1 participates in the DNA damage response. DNA Repair (Amst) 11:185–191. http://dx.doi.org/10.1016/j.dnarep.2011.10.018.
  • Wilson TE. 2002. A genomics-based screen for yeast mutants with an altered recombination/end-joining repair ratio. Genetics 162:677–688.
  • Ooi SL, Shoemaker DD, Boeke JD. 2001. A DNA microarray-based genetic screen for nonhomologous end-joining mutants in Saccharomyces cerevisiae. Science 294:2552–2556. http://dx.doi.org/10.1126/science.1065672.
  • Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin ZY, Liang W, Marback M, Paw J, San Luis BJ, Shuteriqi E, Tong AH, van Dyk N, Wallace IM, Whitney JA, Weirauch MT, Zhong G, Zhu H, Houry WA, Brudno M, Ragibizadeh S, Papp B, Pal C, Roth FP, Giaever G, Nislow C, Troyanskaya OG, Bussey H, Bader GD, Gingras AC, Morris QD, Kim PM, Kaiser CA, Myers CL, Andrews BJ, Boone C. 2010. The genetic landscape of a cell. Science 327:425–431. http://dx.doi.org/10.1126/science.1180823.
  • Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, Christie KR, Costanzo MC, Dwight SS, Engel SR, Fisk DG, Hirschman JE, Hitz BC, Karra K, Krieger CJ, Miyasato SR, Nash RS, Park J, Skrzypek MS, Simison M, Weng S, Wong ED. 2012. Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res 40:D700–D705. http://dx.doi.org/10.1093/nar/gkr1029.
  • Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S, Boucher L, Winter A, Stark C, Nixon J, Ramage L, Kolas N, O'Donnell L, Reguly T, Breitkreutz A, Sellam A, Chen D, Chang C, Rust J, Livstone M, Oughtred R, Dolinski K, Tyers M. 2013. The BioGRID interaction database: 2013 update. Nucleic Acids Res 41:D816–D823. http://dx.doi.org/10.1093/nar/gks1158.
  • Hillenmeyer ME, Fung E, Wildenhain J, Pierce SE, Hoon S, Lee W, Proctor M, St Onge RP, Tyers M, Koller D, Altman RB, Davis RW, Nislow C, Giaever G. 2008. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320:362–365. http://dx.doi.org/10.1126/science.1150021.
  • Erdemir T, Bilican B, Cagatay T, Goding CR, Yavuzer U. 2002. Saccharomyces cerevisiae C1D is implicated in both non-homologous DNA end joining and homologous recombination. Mol Microbiol 46:947–957. http://dx.doi.org/10.1046/j.1365-2958.2002.03224.x.
  • Huertas P, Cortes-Ledesma F, Sartori AA, Aguilera A, Jackson SP. 2008. CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 455:689–692. http://dx.doi.org/10.1038/nature07215.
  • Richardson C, Moynahan ME, Jasin M. 1998. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev 12:3831–3842. http://dx.doi.org/10.1101/gad.12.24.3831.
  • Pierce AJ, Johnson RD, Thompson LH, Jasin M. 1999. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev 13:2633–2638. http://dx.doi.org/10.1101/gad.13.20.2633.
  • Lee YH, Kuo CY, Stark JM, Shih HM, Ann DK. 2013. HP1 promotes tumor suppressor BRCA1 functions during the DNA damage response. Nucleic Acids Res 41:5784–5798. http://dx.doi.org/10.1093/nar/gkt231.
  • Babu M, Krogan NJ, Awrey DE, Emili A, Greenblatt JF. 2009. Systematic characterization of the protein interaction network and protein complexes in Saccharomyces cerevisiae using tandem affinity purification and mass spectrometry. Methods Mol Biol 548:187–207. http://dx.doi.org/10.1007/978-1-59745-540-4_11.
  • Maere S, Heymans K, Kuiper M. 2005. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449. http://dx.doi.org/10.1093/bioinformatics/bti551.
  • Merico D, Isserlin R, Stueker O, Emili A, Bader GD. 2010. Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 5:e13984. http://dx.doi.org/10.1371/journal.pone.0013984.
  • Tosti E, Katakowski JA, Schaetzlein S, Kim HS, Ryan CJ, Shales M, Roguev A, Krogan NJ, Palliser D, Keogh MC, Edelmann W. 2014. Evolutionarily conserved genetic interactions with budding and fission yeast MutS identify orthologous relationships in mismatch repair-deficient cancer cells. Genome Med 6:68. http://dx.doi.org/10.1186/s13073-014-0068-4.
  • Clikeman JA, Khalsa GJ, Barton SL, Nickoloff JA. 2001. Homologous recombinational repair of double-strand breaks in yeast is enhanced by MAT heterozygosity through yKU-dependent and -independent mechanisms. Genetics 157:579–589.
  • Guirouilh-Barbat J, Huck S, Bertrand P, Pirzio L, Desmaze C, Sabatier L, Lopez BS. 2004. Impact of the KU80 pathway on NHEJ-induced genome rearrangements in mammalian cells. Mol Cell 14:611–623. http://dx.doi.org/10.1016/j.molcel.2004.05.008.
  • Frank-Vaillant M, Marcand S. 2001. NHEJ regulation by mating type is exercised through a novel protein, Lif2p, essential to the ligase IV pathway. Genes Dev 15:3005–3012. http://dx.doi.org/10.1101/gad.206801.
  • Johnston M, Flick JS, Pexton T. 1994. Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae. Mol Cell Biol 14:3834–3841.
  • Flick JS, Johnston M. 1990. Two systems of glucose repression of the GAL1 promoter in Saccharomyces cerevisiae. Mol Cell Biol 10:4757–4769.
  • Harrison JC, Haber JE. 2006. Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet 40:209–235. http://dx.doi.org/10.1146/annurev.genet.40.051206.105231.
  • Pellicioli A, Lucca C, Liberi G, Marini F, Lopes M, Plevani P, Romano A, Di Fiore PP, Foiani M. 1999. Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase. EMBO J 18:6561–6572. http://dx.doi.org/10.1093/emboj/18.22.6561.
  • Roberts TM, Kobor MS, Bastin-Shanower SA, Ii M, Horte SA, Gin JW, Emili A, Rine J, Brill SJ, Brown GW. 2006. Slx4 regulates DNA damage checkpoint-dependent phosphorylation of the BRCT domain protein Rtt107/Esc4. Mol Biol Cell 17:539–548. http://dx.doi.org/10.1091/mbc.E05-08-0785.
  • Luo K, Vega-Palas MA, Grunstein M. 2002. Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev 16:1528–1539. http://dx.doi.org/10.1101/gad.988802.
  • Mimitou EP, Symington LS. 2008. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455:770–774. http://dx.doi.org/10.1038/nature07312.
  • Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER, III, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ. 2007. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316:1160–1166. http://dx.doi.org/10.1126/science.1140321.
  • van Attikum H, Gasser SM. 2005. The histone code at DNA breaks: a guide to repair? Nat Rev Mol Cell Biol 6:757–765. http://dx.doi.org/10.1038/nrm1737.
  • Kim ST, Lim DS, Canman CE, Kastan MB. 1999. Substrate specificities and identification of putative substrates of ATM kinase family members. J Biol Chem 274:37538–37543. http://dx.doi.org/10.1074/jbc.274.53.37538.
  • Hartlerode AJ, Scully R. 2009. Mechanisms of double-strand break repair in somatic mammalian cells. Biochem J 423:157–168. http://dx.doi.org/10.1042/BJ20090942.
  • Sears CR, Turchi JJ. 2012. Complex cisplatin-double strand break (DSB) lesions directly impair cellular non-homologous end-joining (NHEJ) independent of downstream damage response (DDR) pathways. J Biol Chem 287:24263–24272. http://dx.doi.org/10.1074/jbc.M112.344911.
  • Rappold I, Iwabuchi K, Date T, Chen J. 2001. Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. J Cell Biol 153:613–620. http://dx.doi.org/10.1083/jcb.153.3.613.
  • Jullien D, Vagnarelli P, Earnshaw WC, Adachi Y. 2002. Kinetochore localisation of the DNA damage response component 53BP1 during mitosis. J Cell Sci 115:71–79.
  • Seluanov A, Mittelman D, Pereira-Smith OM, Wilson JH, Gorbunova V. 2004. DNA end joining becomes less efficient and more error-prone during cellular senescence. Proc Natl Acad Sci U S A 101:7624–7629. http://dx.doi.org/10.1073/pnas.0400726101.
  • Guenole A, Srivas R, Vreeken K, Wang ZZ, Wang S, Krogan NJ, Ideker T, van Attikum H. 2013. Dissection of DNA damage responses using multiconditional genetic interaction maps. Mol Cell 49:346–358. http://dx.doi.org/10.1016/j.molcel.2012.11.023.
  • Hein J, Boichuk S, Wu J, Cheng Y, Freire R, Jat PS, Roberts TM, Gjoerup OV. 2009. Simian virus 40 large T antigen disrupts genome integrity and activates a DNA damage response via Bub1 binding. J Virol 83:117–127. http://dx.doi.org/10.1128/JVI.01515-08.
  • Polo SE, Jackson SP. 2011. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 25:409–433. http://dx.doi.org/10.1101/gad.2021311.
  • Fnu S, Williamson EA, De Haro LP, Brenneman M, Wray J, Shaheen M, Radhakrishnan K, Lee SH, Nickoloff JA, Hromas R. 2011. Methylation of histone H3 lysine 36 enhances DNA repair by nonhomologous end-joining. Proc Natl Acad Sci U S A 108:540–545. http://dx.doi.org/10.1073/pnas.1013571108.
  • Dotiwala F, Harrison JC, Jain S, Sugawara N, Haber JE. 2010. Mad2 prolongs DNA damage checkpoint arrest caused by a double-strand break via a centromere-dependent mechanism. Curr Biol 20:328–332. http://dx.doi.org/10.1016/j.cub.2009.12.033.
  • Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O'Shea EK, Weissman JS. 2003. Global analysis of protein expression in yeast. Nature 425:737–741. http://dx.doi.org/10.1038/nature02046.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.