38
Views
34
CrossRef citations to date
0
Altmetric
Article

Molecular Mechanism for the Control of Eukaryotic Elongation Factor 2 Kinase by pH: Role in Cancer Cell Survival

, , , , , , , , & show all
Pages 1805-1824 | Received 07 Jan 2015, Accepted 03 Mar 2015, Published online: 20 Mar 2023

REFERENCES

  • Fitts RH. 1994. Cellular mechanisms of muscle fatigue. Physiol Rev 74:49–94.
  • Kraut JA, Madias NE. 2010. Metabolic acidosis: pathophysiology, diagnosis and management. Nat Rev Nephrol 6:274–285. http://dx.doi.org/10.1038/nrneph.2010.33.
  • Neri D, Supuran CT. 2011. Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 10:767–777. http://dx.doi.org/10.1038/nrd3554.
  • Buttgereit F, Brand MD. 1995. A hierarchy of ATP-consuming processes in mammalian cells. Biochem J 312(Part 1):163–167.
  • Balgi AD, Diering GH, Donohue E, Lam KK, Fonseca BD, Zimmerman C, Numata M, Roberge M. 2011. Regulation of mTORC1 signaling by pH. PLoS One 6:e21549. http://dx.doi.org/10.1371/journal.pone.0021549.
  • England BK, Chastain JL, Mitch WE. 1991. Abnormalities in protein synthesis and degradation induced by extracellular pH in BC3H1 myocytes. Am J Physiol 260:C277–C282.
  • Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH, Ibrahim-Hashim A, Bailey K, Balagurunathan Y, Rothberg JM, Sloane BF, Johnson J, Gatenby RA, Gillies RJ. 2013. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res 73:1524–1535. http://dx.doi.org/10.1158/0008-5472.CAN-12-2796.
  • Damaghi M, Wojtkowiak JW, Gillies RJ. 2013. pH sensing and regulation in cancer. Front Physiol 4:370. http://dx.doi.org/10.3389/fphys.2013.00370.
  • Proud CG. 2007. Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J 403:217–234. http://dx.doi.org/10.1042/BJ20070024.
  • Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H, Kozma SC, Hafen E, Bos JL, Thomas G. 2003. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 11:1457–1466. http://dx.doi.org/10.1016/S1097-2765(03)00220-X.
  • Kuo CJ, Chung J, Fiorentino DF, Flanagan WM, Blenis J, Crabtree GR. 1992. Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature 358:70–73. http://dx.doi.org/10.1038/358070a0.
  • Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, Lawrence JC Jr, Abraham RT. 1997. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277:99–101. http://dx.doi.org/10.1126/science.277.5322.99.
  • Knebel A, Morrice N, Cohen P. 2001. A novel method to identify protein kinase substrates: eEF2 kinase is phosphorylated and inhibited by SAPK4/p38delta. EMBO J 20:4360–4369. http://dx.doi.org/10.1093/emboj/20.16.4360.
  • Wang X, Li W, Williams M, Terada N, Alessi DR, Proud CG. 2001. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J 20:4370–4379. http://dx.doi.org/10.1093/emboj/20.16.4370.
  • Browne GJ, Proud CG. 2004. A novel mTOR-regulated phosphorylation site in elongation factor 2 kinase modulates the activity of the kinase and its binding to calmodulin. Mol Cell Biol 24:2986–2997. http://dx.doi.org/10.1128/MCB.24.7.2986-2997.2004.
  • Wang X, Regufe da Mota S, Liu R, Moore CE, Xie J, Lanucara F, Agarwala U, Pyr Dit Ruys S, Vertommen D, Rider MH, Eyers C, Proud CG. 2014. Eukaryotic elongation factor 2 kinase activity is controlled by multiple regulatory inputs from oncogenic and anabolic pathways. Mol Cell Biol 34:4088–4103. http://dx.doi.org/10.1128/MCB.01035-14.
  • Ryazanov AG, Shestakova EA, Natapov PG. 1988. Phosphorylation of elongation factor 2 by EF-2 kinase affects rate of translation. Nature 334:170–173. http://dx.doi.org/10.1038/334170a0.
  • Carlberg U, Nilsson A, Nygard O. 1990. Functional properties of phosphorylated elongation factor 2. Eur J Biochem 191:639–645. http://dx.doi.org/10.1111/j.1432-1033.1990.tb19169.x.
  • Dorovkov MV, Pavur KS, Petrov AN, Ryazanov AG. 2002. Regulation of elongation factor-2 kinase by pH. Biochemistry 41:13444–13450. http://dx.doi.org/10.1021/bi026494p.
  • Moore CEJ, Mikolajek H, Regufe da Mota S, Wang X, Kenney JW, Werner JM, Proud CG. 2015. Elongation factor 2 kinase is regulated by proline hydroxylation and protects cells during hypoxia. Mol Cell Biol 35:1788–1804. http://dx.doi.org/10.1128/MCB.01457-14.
  • Diering GH, Mills F, Bamji SX, Numata M. 2011. Regulation of dendritic spine growth through activity-dependent recruitment of the brain-enriched Na(+)/H(+) exchanger NHE5. Mol Biol Cell 22:2246–2257. http://dx.doi.org/10.1091/mbc.E11-01-0066.
  • Pyr Dit Ruys S, Wang X, Smith EM, Herinckx G, Hussain N, Rider MH, Vertommen D, Proud CG. 2012. Identification of autophosphorylation sites in eukaryotic elongation factor-2 kinase. Biochem J 442:681–692. http://dx.doi.org/10.1042/BJ20111530.
  • Hall-Jackson CA, Cross DA, Morrice N, Smythe C. 1999. ATR is a caffeine-sensitive, DNA-activated protein kinase with a substrate specificity distinct from DNA-PK. Oncogene 18:6707–6713. http://dx.doi.org/10.1038/sj.onc.1203077.
  • Huo Y, Iadevaia V, Yao Z, Kelly I, Cosulich S, Guichard S, Foster LJ, Proud CG. 2012. Stable isotope-labelling analysis of the impact of inhibition of the mammalian target of rapamycin on protein synthesis. Biochem J 444:141–151. http://dx.doi.org/10.1042/BJ20112107.
  • Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. 2002. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–175. http://dx.doi.org/10.1016/S0092-8674(02)00808-5.
  • Pigott CR, Mikolajek H, Moore CE, Finn SJ, Phippen CW, Werner JM, Proud CG. 2012. Insights into the regulation of eukaryotic elongation factor 2 kinase and the interplay between its domains. Biochem J 442:105–118. http://dx.doi.org/10.1042/BJ20111536.
  • Markley JL. 1973. Nuclear magnetic resonance studies of trypsin inhibitors. Histidines of virgin and modified soybean trypsin inhibitor (Kunitz). Biochemistry 12:2245–2250.
  • Krezel A, Bal W. 2004. A formula for correlating pKa values determined in D2O and H2O. J Inorg Biochem 98:161–166. http://dx.doi.org/10.1016/j.jinorgbio.2003.10.001.
  • Fonseca BD, Diering GH, Bidinosti MA, Dalal K, Alain T, Balgi AD, Forestieri R, Nodwell M, Rajadurai CV, Gunaratnam C, Tee AR, Duong F, Andersen RJ, Orlowski J, Numata M, Sonenberg N, Roberge M. 2012. Structure-activity analysis of niclosamide reveals potential role for cytoplasmic pH in control of mammalian target of rapamycin complex 1 (mTORC1) signaling. J Biol Chem 287:17530–17545. http://dx.doi.org/10.1074/jbc.M112.359638.
  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. 2005. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101. http://dx.doi.org/10.1126/science.1106148.
  • Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P. 1997. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7:261–269. http://dx.doi.org/10.1016/S0960-9822(06)00122-9.
  • Zheng M, Hou R, Xiao RP. 2004. Acidosis-induced p38 MAPK activation and its implication in regulation of cardiac contractility. Acta Pharmacol Sin 25:1299–1305.
  • Chresta CM, Davies BR, Hickson I, Harding T, Cosulich S, Critchlow SE, Vincent JP, Ellston R, Jones D, Sini P, James D, Howard Z, Dudley P, Hughes G, Smith L, Maguire S, Hummersone M, Malagu K, Menear K, Jenkins R, Jacobsen M, Smith GC, Guichard S, Pass M. 2010. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res 70:288–298. http://dx.doi.org/10.1158/0008-5472.CAN-09-1751.
  • Xie J, Proud CG. 2014. Signaling crosstalk between the mTOR complexes. Translation 2:e28174. http://dx.doi.org/10.4161/trla.28174.
  • Pavur KS, Petrov AN, Ryazanov AG. 2000. Mapping the functional domains of elongation factor-2 kinase. Biochemistry 39:12216–12224. http://dx.doi.org/10.1021/bi0007270.
  • Zhang X, Lin Y, Gillies RJ. 2010. Tumor pH and its measurement. J Nucl Med 51:1167–1170. http://dx.doi.org/10.2967/jnumed.109.068981.
  • Becelli R, Renzi G, Morello R, Altieri F. 2007. Intracellular and extracellular tumor pH measurement in a series of patients with oral cancer. J Craniofac Surg 18:1051–1054. http://dx.doi.org/10.1097/scs.0b013e3180de63eb.
  • Leprivier G, Remke M, Rotblat B, Dubuc A, Mateo AR, Kool M, Agnihotri S, El-Naggar A, Yu B, Somasekharan SP, Faubert B, Bridon G, Tognon CE, Mathers J, Thomas R, Li A, Barokas A, Kwok B, Bowden M, Smith S, Wu X, Korshunov A, Hielscher T, Northcott PA, Galpin JD, Ahern CA, Wang Y, McCabe MG, Collins VP, Jones RG, Pollak M, Delattre O, Gleave ME, Jan E, Pfister SM, Proud CG, Derry WB, Taylor MD, Sorensen PH. 2013. The eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation. Cell 153:1064–1079. http://dx.doi.org/10.1016/j.cell.2013.04.055.
  • Chen Z, Gopalakrishnan SM, Bui MH, Soni NB, Warrior U, Johnson EF, Donnelly JB, Glaser KB. 2011. 1-Benzyl-3-cetyl-2-methylimidazolium iodide (NH125) induces phosphorylation of eukaryotic elongation factor-2 (eEF2): a cautionary note on the anticancer mechanism of an eEF2 kinase inhibitor. J Biol Chem 286:43951–43958. http://dx.doi.org/10.1074/jbc.M111.301291.
  • Thiry P, Vandermeers A, Vandermeers-Piret MC, Rathe J, Christophe J. 1980. The activation of brain adenylate cyclase and brain cyclic-nucleotide phosphodiesterase by seven calmodulin derivatives. Eur J Biochem 103:409–414. http://dx.doi.org/10.1111/j.1432-1033.1980.tb04327.x.
  • Kruiswijk F, Yuniati L, Magliozzi R, Low TY, Lim R, Bolder R, Mohammed S, Proud CG, Heck AJ, Pagano M, Guardavaccaro D. 2012. Coupled activation and degradation of eEF2K regulates protein synthesis in response to genotoxic stress. Sci Signal 5:ra40. http://dx.doi.org/10.1126/scisignal.2002718.
  • Gatenby RA, Gillies RJ. 2004. Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899. http://dx.doi.org/10.1038/nrc1478.
  • McCarty MF, Whitaker J. 2010. Manipulating tumor acidification as a cancer treatment strategy. Altern Med Rev 15:264–272.
  • Teleman AA, Chen YW, Cohen SM. 2005. 4E-BP functions as a metabolic brake used under stress conditions but not during normal growth. Genes Dev 19:1844–1848. http://dx.doi.org/10.1101/gad.341505.
  • Scheetz AJ, Nairn AC, Constantine-Paton M. 1997. N-methyl-D-aspartate receptor activation and visual activity induce elongation factor-2 phosphorylation in amphibian tecta: a role for N-methyl-D-aspartate receptors in controlling protein synthesis. Proc Natl Acad Sci U S A 94:14770–14775. http://dx.doi.org/10.1073/pnas.94.26.14770.
  • Searle J, Lawson TA, Abbott PJ, Harmon B, Kerr JF. 1975. An electron-microscope study of the mode of cell death induced by cancer-chemotherapeutic agents in populations of proliferating normal and neoplastic cells. J Pathol 116:129–138. http://dx.doi.org/10.1002/path.1711160302.
  • Ishizaki Y, Cheng L, Mudge AW, Raff MC. 1995. Programmed cell death by default in embryonic cells, fibroblasts, and cancer cells. Mol Biol Cell 6:1443–1458. http://dx.doi.org/10.1091/mbc.6.11.1443.
  • Xu J, Yeh CH, Chen S, He L, Sensi SL, Canzoniero LM, Choi DW, Hsu CY. 1998. Involvement of de novo ceramide biosynthesis in tumor necrosis factor-alpha/cycloheximide-induced cerebral endothelial cell death. J Biol Chem 273:16521–16526. http://dx.doi.org/10.1074/jbc.273.26.16521.
  • Tang D, Lahti JM, Grenet J, Kidd VJ. 1999. Cycloheximide-induced T-cell death is mediated by a Fas-associated death domain-dependent mechanism. J Biol Chem 274:7245–7252. http://dx.doi.org/10.1074/jbc.274.11.7245.
  • Mekhail K, Khacho M, Gunaratnam L, Lee S. 2004. Oxygen sensing by H+: implications for HIF and hypoxic cell memory. Cell Cycle 3:1027–1029. http://dx.doi.org/10.4161/cc.3.8.1075.
  • Connolly E, Braunstein S, Formenti S, Schneider RJ. 2006. Hypoxia inhibits protein synthesis through a 4E-BP1 and elongation factor 2 kinase pathway controlled by mTOR and uncoupled in breast cancer cells. Mol Cell Biol 26:3955–3965. http://dx.doi.org/10.1128/MCB.26.10.3955-3965.2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.