170
Views
23
CrossRef citations to date
0
Altmetric
Article

Simultaneous Gene Editing by Injection of mRNAs Encoding Transcription Activator-Like Effector Nucleases into Mouse Zygotes

, , , , , , , , , & show all
Pages 1649-1658 | Received 08 Jan 2014, Accepted 14 Feb 2014, Published online: 20 Mar 2023

REFERENCES

  • Cappechi MR. 2005. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat. Rev. Genet. 6:507–512. http://dx.doi.org/10.1038/nrg1619.
  • Dow LE, Premsrirut PK, Zuber J, Fellmann C, McJunkin K, Miething C, Park Y, Dickins RA, Hannon GJ, Lowe SW. 2012. A pipeline for the generation of shRNA transgenic mice. Nat. Protoc. 7:374–393. http://dx.doi.org/10.1038/nprot.2011.446.
  • Fellmann C, Zuber J, McJunkin K, Chang K, Malone CD, Dickins RA, Xu Q, Hengartner MO, Elledge SJ, Hannon GJ, Lowe SW. 2011. Functional identification of optimized RNAi triggers using a massively parallel sensor assay. Mol. Cell 41:733–746. http://dx.doi.org/10.1016/j.molcel.2011.02.008.
  • Gaj T, Gersbach CA, Barbas CFIII. 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biochem. 31:397–405. http://dx.doi.org/10.1016/j.tibtech.2013.04.004.
  • Joung JK, Sander JD. 2013. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell. Biol. 14:49–55. http://dx.doi.org/10.1038/nrm3486.
  • Wefers B, Panda SK, Ortiz O, Brandl C, Hensler S, Hansen J, Wurst W, Kuhn R. 2013. Generation of targeted mouse mutants by embryo microinjection of TALEN mRNA. Nat. Protoc. 8:2355–2379. http://dx.doi.org/10.1038/nprot.2013.142.
  • Cermak T, Doyle EL, Christian M, Wang L, Zhaing Y, Schmidt C, Baller JA, Somia NV, Briggs AW, Rios X, Chari R, Yang L, Zhang F, Mali P, Church GM. 2011. Efficient design and assembly of custom TALEN and other TAL-effector-based constructs for DNA targeting. Nucleic Acids Res. 39:e82. http://dx.doi.org/10.1093/nar/gkr218.
  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761. http://dx.doi.org/10.1534/genetics.110.120717.
  • Hinkley SJ, Dulay GP, Hua KL, Ankoudinova J, Cost JG, Umov FD, Zhang HS, Holmes MC, Zhang L, Grogory PD, Rebar EJ. 2011. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29:143–148. http://dx.doi.org/10.1038/nbt.1755.
  • Morbitzer R, Romer P, Boch J, Lahaye T. 2010. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc. Natl. Acad. Sci. U. S. A. 107:21617–21622. http://dx.doi.org/10.1073/pnas.1013133107.
  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512. http://dx.doi.org/10.1126/science.1178811.
  • Moscou MJ, Bogdanove AJ. 2009. A simple cipher governs DNA recognition by TAL effectors. Science 326:1501. http://dx.doi.org/10.1126/science.1178817.
  • Lieber MR. 2010. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79:181–211. http://dx.doi.org/10.1146/annurev.biochem.052308.093131.
  • Ding Q, Lee YK, Schaefer EA, Peters DT, Veres A, Kim K, Kuperwasser N, Motola DL, Meissner TB, Hendriks WT, Trevisan M, Gupta RM, Moisan A, Banks E, Friesen M, Schinzel RT, Xia F, Tang A, Xia Y, Figueroa E, Wann A, Ahfeldt T, Daheron L, Zhang F, Rubin LL, Peng LF, Chung RT, Musunuru K, Cowan CA. 2013. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 12:238–251. http://dx.doi.org/10.1016/j.stem.2012.11.011.
  • Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q., Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, Zeitler B, Cherone JM, Meng X, Hinkley SJ, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R. 2012. Genetic engineering of human ES and iPS cells using TALE nucleases. Nat. Biotechnol. 29:731–734. http://dx.doi.org/10.1038/nbt.1927.
  • Wang H, Hu YC, Markoulaki S, Welstead GG, Cheng AW, Shivalila CS, Pyntikova T, Dadon DB, Voytas DF, Bogdanove AJ, Page DC, Jaenisch R. 2013. TALEN-mediated editing of the mouse Y chromosome. Nat. Biotechnol. 31:530–532. http://dx.doi.org/10.1038/nbt.2595.
  • Bogdanove AJ, Voytas DF. 2011. TAL effectors: customizable proteins for DNA targeting. Science 333:1848–1850. http://dx.doi.org/10.1126/science.1204094.
  • Scholze H, Boch J. 2011. Tal effectors are remote controls for gene activation. Curr. Opin. Microbiol. 14:47–53. http://dx.doi.org/10.1016/j.mib.2010.12.001.
  • Briggs AW, Rios X, Chari R, Yang L, Zhang F, Mali P, Church GM. 2012. Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res. 40:e117. http://dx.doi.org/10.1093/nar/gks624.
  • Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK. 2011. FLASH assembly of TALENs for high-throughput genome editing. Nat. Biotechnol. 30:460–465. http://dx.doi.org/10.1038/nbt.2170.
  • Schmid-Burgk JL, Schmidt T, Kaiser V, Höning K, Hornung V. 2013. A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nat. Biotechnol. 31:76–81. http://dx.doi.org/10.1038/nbt.2460.
  • Kim Y, Kweon J, Kim A, Chon JK, Yoo JY, Kim HJ, Kim S, Lee C, Jeong E, Chung E, Kim D, Lee MS, Go EM, Song HJ, Kim H, Cho N, Bang D, Kim S, Kim JS. 2013. A library of TAL effector nucleases spanning the human genome. Nat. Biotechnol. 31:251–258. http://dx.doi.org/10.1038/nbt.2517.
  • Davies B, Davies G, Preece C, Puliyadi R, Szumska D, Bhattacharya S. 2013. Site specific mutation of the Zic2 locus by microinjection of TALEN mRNA in mouse CD1, C3H, and C57BL/6J oocytes. PLoS One 8:e60216. http://dx.doi.org/10.1371/journal.pone.0060216.
  • Qiu Z, Liu M, Chen Z, Shao Y, Pan H, Wei G, Yu C, Zhang L, Li X, Wang P, Fan HY, Du B, Liu B, Liu M, Li D. 2013. High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases. Nucleic Acids Res. 41:e120. http://dx.doi.org/10.1093/nar/gkt258.
  • Sung YH, Baek I-J, Kim DH, Jeon J, Lee J, Lee K, Jeong D, Kim J-S, Lee H-W. 2013. Knockout mice created by TALEN-mediated gene targeting. Nat. Biotechnol. 31:23–24. http://dx.doi.org/10.1038/nbt.2477.
  • Wefers B, Meyer M, Ortiz O, Hrabe de Angelis M, Hansen J, Wurst W, Kuhn R. 2013. Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides. Proc. Natl. Acad. Sci. U. S. A. 110:3782–3787. http://dx.doi.org/10.1073/pnas.1218721110.
  • Sanjana NE, Cong L, Zhou Y, Cunniff MM, Feng G, Zhang F. 2012. A transcription activator-like effector toolbox for genome engineering. Nat. Protoc. 7:171–192. http://dx.doi.org/10.1038/nprot.2011.431.
  • Li C, Finkelstein D, Sherr CJ. 2013. Arf tumor suppressor and miR-205 regulate cell adhesion and formation of extraembryonic endoderm from pluripotent stem cells. Proc. Natl. Acad. Sci. U. S. A. 110:E1112–E1121. http://dx.doi.org/10.1073/pnas.1302184110.
  • Gromley A, Churchman ML, Zindy F, Sherr CJ. 2009. Transient expression of the Arf tumor suppressor during male germ cell and eye development in Arf-Cre reporter mice. Proc. Natl. Acad. Sci. U. S. A. 106:6285–6290. (Erratum, 106:9120.) http://dx.doi.org/10.1073/pnas.0902310106.
  • Namekawa SH, Payer B, Huynh KD, Jaenisch R, Lee JT. 2010. Two-step imprinted X inactivation: repeat versus genic silencing in the mouse. Mol. Cell. Biol. 30:3187–3205. http://dx.doi.org/10.1128/MCB.00227-10.
  • Bultman SJ, Michaud EJ, Woychik RP. 1992. Molecular characterization of the mouse agouti locus. Cell 71:1195–1204. http://dx.doi.org/10.1016/S0092-8674(05)80067-4.
  • Richardson C, Moynahan ME, Jasin M. 1998. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev. 12:3831–3842. http://dx.doi.org/10.1101/gad.12.24.3831.
  • Adenot PG, Mercier Y, Renard JP, Thompson EM. 1997. Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 124:4615–4625.
  • Park CY, Jeker LT, Carver-Moore K, Oh A, Liu HJ, Cameron R, Richards H, Li Z, Adler D, Yoshinaga Y, Martinez M, Nefadov M, Abbas AK, Weiss A, Lanier LL, de Jong PJ, Bluestone JA, Srivastava D, McManus MT. 2013. A resource for the conditional ablation of microRNAs in the mouse. Cell Rep. 1:385–391. http://dx.doi.org/10.1016/j.celrep.2012.02.008.
  • Wang D, Zhang Z, O'Loughlin E, Wang L, Fan X, Lai EC, Yi R. 2013. MicroRNA-205 controls neonatal expansion of skin stem cells by modulating the PI(3)K pathway. Nat. Cell Biol. 15:1153–1163. http://dx.doi.org/10.1038/ncb2827.
  • Mussolino C, Morbitzer R, Lutge F, Dannemann N, Lahaye T, Cathomen T. 2011. A novel TALE nuclease scaffold enables high genomic editing activity in combination with low toxicity. Nucleic Acids Res. 39:9283–9293. http://dx.doi.org/10.1093/nar/gkr597.
  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. http://dx.doi.org/10.1126/science.1225829.
  • Mali P, Esvelt KM, Church GM. 2013. Cas9 as a versatile tool for engineering biology. Nat. Methods 10:957–963. http://dx.doi.org/10.1038/nmeth.2649.
  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, diCarlo JE, Norville JE, Church GM. 2013. RNA-guided human genome engineering via Cas9. Science 339:823–825. http://dx.doi.org/10.1126/science.1232033.
  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. http://dx.doi.org/10.1126/science.1231143.
  • Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X, Xhao Y, Liu M. 2013. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat. Biotechnol. 31:681–683. http://dx.doi.org/10.1038/nbt.2661.
  • Li W, Teng F, Li T, Zhou Q. 2013. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat. Biotechnol. 31:684–686. http://dx.doi.org/10.1038/nbt.2652.
  • Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaensich R. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918. http://dx.doi.org/10.1016/j.cell.2013.04.025.
  • Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS. 2013. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 24:132–141. http://dx.doi.org/10.1101/gr.162339.113.
  • Fu Y, Foden JA, Khayter C, Maeder MI, Reyon D, Joung JK, Sander JD. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31:822–826. http://dx.doi.org/10.1038/nbt.2623.
  • Ran FA, Hsu PD, Lin CY, Gootennerg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F. 2013. Double nicking by RNA-guided CRISPR Cas for enhanced genome editing specificity. Cell 154:1380–1389. http://dx.doi.org/10.1016/j.cell.2013.08.021.
  • Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stem-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451. http://dx.doi.org/10.1016/j.cell.2013.06.044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.