24
Views
11
CrossRef citations to date
0
Altmetric
Article

Cyclin D1 and C/EBPβ LAP1 Operate in a Common Pathway To Promote Mammary Epithelial Cell Differentiation

, , , , , , & show all
Pages 3168-3179 | Received 09 Jan 2014, Accepted 01 Jun 2014, Published online: 20 Mar 2023

REFERENCES

  • Nerlov C. 2010. Transcriptional and translational control of C/EBPs: the case for “deep” genetics to understand physiological function. Bioessays 32:680–686. http://dx.doi.org/10.1002/bies.201000004.
  • Nerlov C. 2007. The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control. Trends Cell. Biol. 17:318–324. http://dx.doi.org/10.1016/j.tcb.2007.07.004.
  • Grimm SL, Rosen JM. 2003. The role of C/EBPβ in mammary gland development and breast cancer. J. Mammary Gland Biol. Neoplasia 8:191–204. http://dx.doi.org/10.1023/A:1025900908026.
  • Robinson GW, Johnson PF, Hennighausen L, Sterneck E. 1998. The C/EBPβ transcription factor regulates epithelial cell proliferation and differentiation in the mammary gland. Genes Dev. 12:1907–1916. http://dx.doi.org/10.1101/gad.12.12.1907.
  • Seagroves TN, Krnacik S, Raught B, Gay J, Burgess-Beusse B, Darlington GJ, Rosen JM. 1998. C/EBPβ, but not C/EBPα, is essential for ductal morphogenesis, lobuloalveolar proliferation, and functional differentiation in the mouse mammary gland. Genes Dev. 12:1917–1928. http://dx.doi.org/10.1101/gad.12.12.1917.
  • Hennighausen L, Robinson GW. 2005. Information networks in the mammary gland. Nat. Rev. Mol. Cell. Biol. 6:715–725. http://dx.doi.org/10.1038/nrm1714.
  • Hynes NE, Watson CJ. 2010. Mammary gland growth factors: roles in normal development and in cancer. Cold Spring Harb. Perspect. Biol. 2:a003186. http://dx.doi.org/10.1101/cshperspect.a003186.
  • Brisken C, O'Malley B. 2010. Hormone action in the mammary gland. Cold Spring Harb. Perspect. Biol. 2:a003178. http://dx.doi.org/10.1101/cshperspect.a003178.
  • Descombes P, Schibler U. 1991. A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell 67:569–579. http://dx.doi.org/10.1016/0092-8674(91)90531-3.
  • Calkhoven CF, Muller C, Leutz A. 2000. Translational control of C/EBPα and C/EBPβ isoform expression. Genes Dev. 14:1920–1932.
  • Smink JJ, Begay V, Schoenmaker T, Sterneck E, de Vries TJ, Leutz A. 2009. Transcription factor C/EBPβ isoform ratio regulates osteoclastogenesis through MafB. EMBO J. 28:1769–1781. http://dx.doi.org/10.1038/emboj.2009.127.
  • Hirai Y, Radisky D, Boudreau R, Simain M, Stevens ME, Oka Y, Takebe K, Niwa S, Bissell MJ. 2001. Epimorphin mediates mammary luminal morphogenesis through control of C/EBPβ. J. Cell Biol. 153:785–794. http://dx.doi.org/10.1083/jcb.153.4.785.
  • Williams SC, Cantwell CA, Johnson PF. 1991. A family of C/EBP-related proteins capable of forming covalently linked leucine dimers in vitro. Genes Dev. 5:1553–1567. http://dx.doi.org/10.1101/gad.5.9.1553.
  • Kowenz-Leutz E, Twamley G, Ansieau S, Leutz A. 1994. Novel mechanism of C/EBPβ (NF-M) transcriptional control: activation through derepression. Genes Dev. 8:2781–2791. http://dx.doi.org/10.1101/gad.8.22.2781.
  • Williams SC, Baer M, Dillner AJ, Johnson PF. 1995. CRP2 (C/EBPβ) contains a bipartite regulatory domain that controls transcriptional activation, DNA binding and cell specificity. EMBO J. 14:3170–3183.
  • Nakajima T, Kinoshita S, Sasagawa T, Sasaki K, Naruto M, Kishimoto T. 1993. Phosphorylation at threonine-235 by a ras-dependent mitogen-activated protein kinase cascade is essential for transcription factor NF-IL6. Proc. Natl. Acad. Sci. U. S. A. 90:2207–2211. http://dx.doi.org/10.1073/pnas.90.6.2207.
  • Zhu S, Yoon K, Sterneck E, Johnson PF, Smart RC. 2002. CCAAT/enhancer binding protein-β is a mediator of keratinocyte survival and skin tumorigenesis involving oncogenic Ras signaling. Proc. Natl. Acad. Sci. U. S. A. 99:207–212. http://dx.doi.org/10.1073/pnas.012437299.
  • Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M, Mc Henry KT, Pinchback RM, Ligon AH, Cho YJ, Haery L, Greulich H, Reich M, Winckler W, Lawrence MS, Weir BA, Tanaka KE, Chiang DY, Bass AJ, Loo A, Hoffman C, Prensner J, Liefeld T, Gao Q, Yecies D, Signoretti S, Maher E, Kaye FJ, Sasaki H, Tepper JE, Fletcher JA, Tabernero J, Baselga J, Tsao MS, Demichelis F, Rubin MA, Janne PA, Daly MJ, Nucera C, Levine RL, Ebert BL, Gabriel S, Rustgi AK, Antonescu CR, Ladanyi M, Letai A, Garraway LA, Loda M, Beer DG, True LD, Okamoto A, Pomeroy SL, Singer S, Golub TR, Lander ES, Getz G, Sellers WR, Meyerson M. 2010. The landscape of somatic copy-number alteration across human cancers. Nature 463:899–905. http://dx.doi.org/10.1038/nature08822.
  • Sicinski P, Donaher JL, Parker SB, Li T, Fazeli A, Gardner H, Haslam SZ, Bronson RT, Elledge S, Weinberg RA. 1995. Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82:621–630. http://dx.doi.org/10.1016/0092-8674(95)90034-9.
  • Fantl V, Stamp G, Andrews A, Rosewell I, Dickson C. 1995. Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev. 9:2364–2372. http://dx.doi.org/10.1101/gad.9.19.2364.
  • Landis MW, Pawlyk BS, Li T, Sicinski P, Hinds PW. 2006. Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell 9:13–22. http://dx.doi.org/10.1016/j.ccr.2005.12.019.
  • Yu Q, Sicinska E, Geng Y, Ahnstrom M, Zagozdzon A, Kong Y, Gardner H, Kiyokawa H, Harris LN, Stal O, Sicinski P. 2006. Requirement for CDK4 kinase function in breast cancer. Cancer Cell 9:23–32. http://dx.doi.org/10.1016/j.ccr.2005.12.012.
  • Lamb J, Ramaswamy S, Ford HL, Contreras B, Martinez RV, Kittrell FS, Zahnow CA, Patterson N, Golub TR, Ewen ME. 2003. A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell 114:323–334. http://dx.doi.org/10.1016/S0092-8674(03)00570-1.
  • Desprez P-Y, Roskelley C, Campisi J, Bissell MJ. 1993. Isolation of functional cell lines from a mouse mammary epithelial cell strain: the importance of basement membrane and cell-cell interaction. Mol. Cell Diff. 1:99–110.
  • Neuman E, Ladha MH, Lin N, Upton TM, Miller SJ, DiRenzo J, Pestell RG, Hinds PW, Dowdy SF, Brown M, Ewen ME. 1997. Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol. Cell. Biol. 17:5338–5347.
  • Welm BE, Dijkgraaf GJ, Bledau AS, Welm AL, Werb Z. 2008. Lentiviral transduction of mammary stem cells for analysis of gene function during development and cancer. Cell Stem Cell 2:90–102. http://dx.doi.org/10.1016/j.stem.2007.10.002.
  • Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ, Eeckhoute J, Shao W, Hestermann EV, Geistlinger TR, Fox E, Silver PA, Brown M. 2005. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122:33–43. http://dx.doi.org/10.1016/j.cell.2005.05.008.
  • Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D. 1997. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15:871–875. http://dx.doi.org/10.1038/nbt0997-871.
  • Tsukada J, Saito K, Waterman WR, Webb AC, Auron PE. 1994. Transcription factors NF-IL6 and CREB recognize a common essential site in the human prointerleukin 1β gene. Mol. Cell. Biol. 14:7285–7297.
  • Lin DI, Lessie MD, Gladden AB, Bassing CH, Wagner KU, Diehl JA. 2008. Disruption of cyclin D1 nuclear export and proteolysis accelerates mammary carcinogenesis. Oncogene 27:1231–1242. http://dx.doi.org/10.1038/sj.onc.1210738.
  • Hanlon M, Sturgill TW, Sealy L. 2001. ERK2- and p90Rsk2-dependent pathways regulate the CCAAT/enhancer-binding protein-β interaction with serum response factor. J. Biol. Chem. 276:38449–38456. http://dx.doi.org/10.1074/jbc.M102165200.
  • Mo X, Kowenz-Leutz E, Xu H, Leutz A. 2004. Ras induces mediator complex exchange on C/EBPβ. Mol. Cell 13:241–250. http://dx.doi.org/10.1016/S1097-2765(03)00521-5.
  • Kowenz-Leutz E, Pless O, Dittmar G, Knoblich M, Leutz A. 2010. Crosstalk between C/EBPβ phosphorylation, arginine methylation, and SWI/SNF/Mediator implies an indexing transcription factor code. EMBO J. 29:1105–1115. http://dx.doi.org/10.1038/emboj.2010.3.
  • Kowenz-Leutz E, Leutz A. 1999. A C/EBPβ isoform recruits the SWI/SNF complex to activate myeloid genes. Mol. Cell 4:735–743. http://dx.doi.org/10.1016/S1097-2765(00)80384-6.
  • Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER, Yasuda H, Smyth GK, Martin TJ, Lindeman GJ, Visvader JE. 2010. Control of mammary stem cell function by steroid hormone signalling. Nature 465:798–802. http://dx.doi.org/10.1038/nature09027.
  • Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA, Clarke CL, Stingl J, Waterhouse PD, Khokha R. 2010. Progesterone induces adult mammary stem cell expansion. Nature 465:803–807. http://dx.doi.org/10.1038/nature09091.
  • Brisken C, Ayyannan A, Nguyen C, Heineman A, Reinhardt F, Jan T, Dey SK, Dotto GP, Weinberg RA. 2002. IGF-2 is a mediator of prolactin-induced morphogenesis in the breast. Dev. Cell 3:877–887. http://dx.doi.org/10.1016/S1534-5807(02)00365-9.
  • Uematsu S, Kaisho T, Tanaka T, Matsumoto M, Yamakami M, Omori H, Yamamoto M, Yoshimori T, Akira S. 2007. The C/EBPβ isoform 34-kDa LAP is responsible for NF-IL-6-mediated gene induction in activated macrophages, but is not essential for intracellular bacteria killing. J. Immunol. 179:5378–5386. http://dx.doi.org/10.4049/jimmunol.179.8.5378.
  • Wethmar K, Begay V, Smink JJ, Zaragoza K, Wiesenthal V, Dorken B, Calkhoven CF, Leutz A. 2010. C/EBPβΔuORF mice—a genetic model for uORF-mediated translational control in mammals. Genes Dev. 24:15–20. http://dx.doi.org/10.1101/gad.557910.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.