75
Views
23
CrossRef citations to date
0
Altmetric
Minireview

Duplication of the Yeast Spindle Pole Body Once per Cell Cycle

&
Pages 1324-1331 | Published online: 17 Mar 2023

REFERENCES

  • Nigg EA, Stearns T. 2011. The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 13:1154–1160. http://dx.doi.org/10.1038/ncb2345.
  • Seybold C, Schiebel E. 2013. Spindle pole bodies. Curr Biol 23:R858–R860. http://dx.doi.org/10.1016/j.cub.2013.07.024.
  • Kilmartin JV. 5 September 2014. Lessons from yeast: the spindle pole body and the centrosome. Philos Trans R Soc Lond B Biol Sci http://dx.doi.org/10.1098/rstb.2013.0456.
  • Goshima G, Mayer M, Zhang N, Stuurman N, Vale RD. 2008. Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle. J Cell Biol 181:421–429. http://dx.doi.org/10.1083/jcb.200711053.
  • Gruss OJ, Carazo-Salas RE, Schatz CA, Guarguaglini G, Kast J, Wilm M, Le Bot N, Vernos I, Karsenti E, Mattaj IW. 2001. Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell 104:83–93. http://dx.doi.org/10.1016/S0092-8674(01)00193-3.
  • Wong YL, Anzola JV, Davis RL, Yoon M, Motamedi A, Kroll A, Seo CP, Hsia JE, Kim SK, Mitchell JW, Mitchell BJ, Desai A, Gahman TC, Shiau AK, Oegema K. 30 April 2015. Cell biology. Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science http://dx.doi.org/10.1126/science.aaa5111.
  • Lambrus BG, Uetake Y, Clutario KM, Daggubati V, Snyder M, Sluder G, Holland AJ. 2015. p53 protects against genome instability following centriole duplication failure. J Cell Biol 210:63–77. http://dx.doi.org/10.1083/jcb.201502089.
  • Serçin O, Larsimont JC, Karambelas AE, Marthiens V, Moers V, Boeckx B, Le Mercier M, Lambrechts D, Basto R, Blanpain C. 2016. Transient PLK4 overexpression accelerates tumorigenesis in p53-deficient epidermis. Nat Cell Biol 18:100–110. http://dx.doi.org/10.1038/ncb3270.
  • Godinho SA, Picone R, Burute M, Dagher R, Su Y, Leung CT, Polyak K, Brugge JS, Thery M, Pellman D. 2014. Oncogene-like induction of cellular invasion from centrosome amplification. Nature 510:167–171. http://dx.doi.org/10.1038/nature13277.
  • Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M. 2003. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426:570–574. http://dx.doi.org/10.1038/nature02166.
  • McCully EK, Robinow CF. 1971. Mitosis in the fission yeast Schizosaccharomyces pombe: a comparative study with light and electron microscopy. J Cell Sci 9:475–507.
  • Ding R, West RR, Morphew DM, Oakley BR, McIntosh JR. 1997. The spindle pole body of Schizosaccharomyces pombe enters and leaves the nuclear envelope as the cell cycle proceeds. Mol Biol Cell 8:1461–1479. http://dx.doi.org/10.1091/mbc.8.8.1461.
  • Burns S, Avena JS, Unruh JR, Yu Z, Smith SE, Slaughter BD, Winey M, Jaspersen SL. 15 September 2015. Structured illumination with particle averaging reveals novel roles for yeast centrosome components during duplication. Elife http://dx.doi.org/10.7554/eLife.08586.
  • Seybold C, Elserafy M, Ruthnick D, Ozboyaci M, Neuner A, Flottmann B, Heilemann M, Wade RC, Schiebel E. 2015. Kar1 binding to Sfi1 C-terminal regions anchors the SPB bridge to the nuclear envelope. J Cell Biol 209:843–861. http://dx.doi.org/10.1083/jcb.201412050.
  • Li S, Sandercock AM, Conduit P, Robinson CV, Williams RL, Kilmartin JV. 2006. Structural role of Sfi1p-centrin filaments in budding yeast spindle pole body duplication. J Cell Biol 173:867–877. http://dx.doi.org/10.1083/jcb.200603153.
  • Byers B, Goetsch L. 1975. Behavior of spindles and spindle plaques in the cell cycle and conjugation of Saccharomyces cerevisiae. J Bacteriol 124:511–523.
  • Adams IR, Kilmartin JV. 1999. Localization of core spindle pole body (SPB) components during SPB duplication in Saccharomyces cerevisiae. J Cell Biol 145:809–823. http://dx.doi.org/10.1083/jcb.145.4.809.
  • Kilmartin JV, Goh PY. 1996. Spc110p: assembly properties and role in the connection of nuclear microtubules to the yeast spindle pole body. EMBO J 15:4592–4602.
  • Sundberg HA, Goetsch L, Byers B, Davis TN. 1996. Role of calmodulin and Spc110p interaction in the proper assembly of spindle pole body components. J Cell Biol 133:111–124. http://dx.doi.org/10.1083/jcb.133.1.111.
  • Elliott S, Knop M, Schlenstedt G, Schiebel E. 1999. Spc29p is a component of the Spc110p subcomplex and is essential for spindle pole body duplication. Proc Natl Acad Sci U S A 96:6205–6210. http://dx.doi.org/10.1073/pnas.96.11.6205.
  • Anderson VE, Prudden J, Prochnik S, Giddings TH, Jr, Hardwick KG. 2007. Novel sfi1 alleles uncover additional functions for Sfi1p in bipolar spindle assembly and function. Mol Biol Cell 18:2047–2056. http://dx.doi.org/10.1091/mbc.E06-10-0918.
  • Elserafy M, Saric M, Neuner A, Lin TC, Zhang W, Seybold C, Sivashanmugam L, Schiebel E. 2014. Molecular mechanisms that restrict yeast centrosome duplication to one event per cell cycle. Curr Biol 24:1456–1466. http://dx.doi.org/10.1016/j.cub.2014.05.032.
  • Avena JS, Burns S, Yu Z, Ebmeier CC, Old WM, Jaspersen SL, Winey M. 2014. Licensing of yeast centrosome duplication requires phosphoregulation of Sfi1. PLoS Genet 10:e1004666. http://dx.doi.org/10.1371/journal.pgen.1004666.
  • Baum P, Furlong C, Byers B. 1986. Yeast gene required for spindle pole body duplication: homology of its product with Ca2+-binding proteins. Proc Natl Acad Sci U S A 83:5512–5516. http://dx.doi.org/10.1073/pnas.83.15.5512.
  • Hartwell LH, Culotti J, Pringle JR, Reid BJ. 1974. Genetic control of the cell division cycle in yeast. Science 183:46–51. http://dx.doi.org/10.1126/science.183.4120.46.
  • Schild D, Ananthaswamy HN, Mortimer RK. 1981. An endomitotic effect of a cell cycle mutation of Saccharomyces cerevisiae. Genetics 97:551–562.
  • Spang A, Courtney I, Fackler U, Matzner M, Schiebel E. 1993. The calcium-binding protein cell division cycle 31 of Saccharomyces cerevisiae is a component of the half bridge of the spindle pole body. J Cell Biol 123:405–416. http://dx.doi.org/10.1083/jcb.123.2.405.
  • Weiss E, Winey M. 1996. The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint. J Cell Biol 132:111–123. http://dx.doi.org/10.1083/jcb.132.1.111.
  • Conde J, Fink GR. 1976. A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc Natl Acad Sci U S A 73:3651–3655. http://dx.doi.org/10.1073/pnas.73.10.3651.
  • Rose MD, Fink GR. 1987. KAR1, a gene required for function of both intranuclear and extranuclear microtubules in yeast. Cell 48:1047–1060. http://dx.doi.org/10.1016/0092-8674(87)90712-4.
  • Spang A, Courtney I, Grein K, Matzner M, Schiebel E. 1995. The Cdc31p-binding protein Kar1p is a component of the half bridge of the yeast spindle pole body. J Cell Biol 128:863–877. http://dx.doi.org/10.1083/jcb.128.5.863.
  • Biggins S, Rose MD. 1994. Direct interaction between yeast spindle pole body components: Kar1p is required for Cdc31p localization to the spindle pole body. J Cell Biol 125:843–852. http://dx.doi.org/10.1083/jcb.125.4.843.
  • Vallen EA, Ho W, Winey M, Rose MD. 1994. Genetic interactions between CDC31 and KAR1, two genes required for duplication of the microtubule organizing center in Saccharomyces cerevisiae. Genetics 137:407–422.
  • Kilmartin JV. 2003. Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication. J Cell Biol 162:1211–1221. http://dx.doi.org/10.1083/jcb.200307064.
  • Jaspersen SL, Ghosh S. 2012. Nuclear envelope insertion of spindle pole bodies and nuclear pore complexes. Nucleus 3:226–236. http://dx.doi.org/10.4161/nucl.20148.
  • Jaspersen SL, Giddings THJ, Winey M. 2002. Mps3p is a novel component of the yeast spindle pole body that interacts with the yeast centrin homologue Cdc31p. J Cell Biol 159:945–956. http://dx.doi.org/10.1083/jcb.200208169.
  • Gardner JM, Smoyer CJ, Stensrud ES, Alexander R, Gogol M, Wiegraebe W, Jaspersen SL. 2011. Targeting of the SUN protein Mps3 to the inner nuclear membrane by the histone variant H2A.Z. J Cell Biol 193:489–507. http://dx.doi.org/10.1083/jcb.201011017.
  • Haase SB, Winey M, Reed SI. 2001. Multi-step control of spindle pole body duplication by cyclin-dependent kinase. Nat Cell Biol 3:38–42. http://dx.doi.org/10.1038/35050543.
  • Bloom J, Cristea IM, Procko AL, Lubkov V, Chait BT, Snyder M, Cross FR. 2011. Global analysis of Cdc14 phosphatase reveals diverse roles in mitotic processes. J Biol Chem 286:5434–5445. http://dx.doi.org/10.1074/jbc.M110.205054.
  • Visintin R, Craig K, Hwang ES, Prinz S, Tyers M, Amon A. 1998. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol Cell 2:709–718. http://dx.doi.org/10.1016/S1097-2765(00)80286-5.
  • Biggins S, Ivanovska I, Rose MD. 1996. Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center. J Cell Biol 133:1331–1346. http://dx.doi.org/10.1083/jcb.133.6.1331.
  • Vallen EA, Hiller MA, Scherson TY, Rose MD. 1992a. Separate domains of KAR1 mediate distinct functions in mitosis and nuclear fusion. J Cell Biol 117:1277–1287.
  • Fischer T, Rodriguez-Navarro S, Pereira G, Racz A, Schiebel E, Hurt E. 2004. Yeast centrin Cdc31 is linked to the nuclear mRNA export machinery. Nat Cell Biol 6:840-U844. http://dx.doi.org/10.1038/ncb1163.
  • Crasta K, Huang P, Morgan G, Winey M, Surana U. 2006. Cdk1 regulates centrosome separation by restraining proteolysis of microtubule-associated proteins. EMBO J 25:2551–2563. http://dx.doi.org/10.1038/sj.emboj.7601136.
  • Visintin R, Prinz S, Amon A. 1997. CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278:460–463. http://dx.doi.org/10.1126/science.278.5337.460.
  • Zachariae W, Schwab M, Nasmyth K, Seufert W. 1998. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282:1721–1724. http://dx.doi.org/10.1126/science.282.5394.1721.
  • Tanaka K, Kanbe T. 1986. Mitosis in the fission yeast Schizosaccharomyces pombe as revealed by freeze-substitution electron microscopy. J Cell Sci 80:253–268.
  • Paoletti A, Bordes N, Haddad R, Schwartz CL, Chang F, Bornens M. 2003. Fission yeast cdc31p is a component of the half-bridge and controls SPB duplication. Mol Biol Cell 14:2793–2808. http://dx.doi.org/10.1091/mbc.E02-10-0661.
  • Bouhlel IB, Ohta M, Mayeux A, Bordes N, Dingli F, Boulanger J, Velve Casquillas G, Loew D, Tran PT, Sato M, Paoletti A. 2015. Cell cycle control of spindle pole body duplication and splitting by Sfi1 and Cdc31 in fission yeast. J Cell Sci 128:1481–1493. http://dx.doi.org/10.1242/jcs.159657.
  • Lee IJ, Wang N, Hu W, Schott K, Bahler J, Giddings TH, Jr, Pringle JR, Du LL, Wu JQ. 2014. Regulation of spindle pole body assembly and cytokinesis by the centrin-binding protein Sfi1 in fission yeast. Mol Biol Cell 25:2735–2749. http://dx.doi.org/10.1091/mbc.E13-11-0699.
  • Uzawa S, Li F, Jin Y, McDonald KL, Braunfeld MB, Agard DA, Cande WZ. 2004. Spindle pole body duplication in fission yeast occurs at the G1/S boundary but maturation is blocked until exit from S by an event downstream of cdc10+. Mol Biol Cell 15:5219–5230. http://dx.doi.org/10.1091/mbc.E04-03-0255.
  • Stemm-Wolf AJ, Morgan G, Giddings TH, Jr, White EA, Marchione R, McDonald HB, Winey M. 2005. Basal body duplication and maintenance require one member of the Tetrahymena thermophila centrin gene family. Mol Biol Cell 16:3606–3619. http://dx.doi.org/10.1091/mbc.E04-10-0919.
  • Koblenz B, Schoppmeier J, Grunow A, Lechtreck KF. 2003. Centrin deficiency in Chlamydomonas causes defects in basal body replication, segregation and maturation. J Cell Sci 116:2635–2646. http://dx.doi.org/10.1242/jcs.00497.
  • Salisbury JL, Suino KM, Busby R, Springett M. 2002. Centrin-2 is required for centriole duplication in mammalian cells. Curr Biol 12:1287–1292. http://dx.doi.org/10.1016/S0960-9822(02)01019-9.
  • Prosser SL, Morrison CG. 2015. Centrin2 regulates CP110 removal in primary cilium formation. J Cell Biol 208:693–701. http://dx.doi.org/10.1083/jcb.201411070.
  • Dantas TJ, Wang Y, Lalor P, Dockery P, Morrison CG. 2011. Defective nucleotide excision repair with normal centrosome structures and functions in the absence of all vertebrate centrins. J Cell Biol 193:307–318. http://dx.doi.org/10.1083/jcb.201012093.
  • Ulrich E, Boehmelt G, Bird A, Beug H. 1992. Immortalization of conditionally transformed chicken cells: loss of normal p53 expression is an early step that is independent of cell transformation. Genes Dev 6:876–887. http://dx.doi.org/10.1101/gad.6.5.876.
  • Geier BM, Wiech H, Schiebel E. 1996. Binding of centrins and yeast calmodulin to synthetic peptides corresponding to binding-sites in the spindle pole body components Kar1p and Spc110p. J Biol Chem 271:28366–28374. http://dx.doi.org/10.1074/jbc.271.45.28366.
  • Azimzadeh J, Hergert P, Delouvee A, Euteneuer U, Formstecher E, Khodjakov A, Bornens M. 2009. hPOC5 is a centrin-binding protein required for assembly of full-length centrioles. J Cell Biol 185:101–114. http://dx.doi.org/10.1083/jcb.200808082.
  • Fu J, Hagan IM, Glover DM. 2015. The centrosome and its duplication cycle. Cold Spring Harb Perspect Biol 7:a015800. http://dx.doi.org/10.1101/cshperspect.a015800.
  • Middendorp S, Paoletti A, Schiebel E, Bornens M. 1997. Identification of a new mammalian centrin gene, more closely related to Sachharomyces cerevisiae CDC31 gene. Proc Natl Acad Sci U S A 94:9141–9146. http://dx.doi.org/10.1073/pnas.94.17.9141.
  • Martinez-Sanz J, Kateb F, Assairi L, Blouquit Y, Bodenhausen G, Abergel D, Mouawad L, Craescu CT. 2010. Structure, dynamics and thermodynamics of the human centrin 2/hSfi1 complex. J Mol Biol 395:191–204. http://dx.doi.org/10.1016/j.jmb.2009.10.041.
  • Martinez-Sanz J, Yang A, Blouquit Y, Duchambon P, Assairi L, Craescu CT. 2006. Binding of human centrin 2 to the centrosomal protein hSfi1. FEBS J 273:4504–4515. http://dx.doi.org/10.1111/j.1742-4658.2006.05456.x.
  • Patten SA, Margaritte-Jeannin P, Bernard JC, Alix E, Labalme A, Besson A, Girard SL, Fendri K, Fraisse N, Biot B, Poizat C, Campan-Fournier A, Abelin-Genevois K, Cunin V, Zaouter C, Liao M, Lamy R, Lesca G, Menassa R, Marcaillou C, Letexier M, Sanlaville D, Berard J, Rouleau GA, Clerget-Darpoux F, Drapeau P, Moldovan F, Edery P. 2015. Functional variants of POC5 identified in patients with idiopathic scoliosis. J Clin Invest 125:1124–1128. http://dx.doi.org/10.1172/JCI77262.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.