178
Views
42
CrossRef citations to date
0
Altmetric
Minireview

Regulation of KAT6 Acetyltransferases and Their Roles in Cell Cycle Progression, Stem Cell Maintenance, and Human Disease

, &
Pages 1900-1907 | Published online: 17 Mar 2023

REFERENCES

  • Steunou A-L, Rossetto D, Côté J. 2014. Regulating chromatin by histone acetylation, p 147–212. In Workman JL, Abmayr SM (ed), Fundamentals of chromatin, 1st ed. Springer, New York, NY. http://dx.doi.org/10.1007/978-1-4614-8624-4.
  • Borrow J, Stanton VP, Jr, Andresen JM, Becher R, Behm FG, Chaganti RS, Civin CI, Disteche C, Dube I, Frischauf AM, Horsman D, Mitelman F, Volinia S, Watmore AE, Housman DE. 1996. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet 14:33–41. http://dx.doi.org/10.1038/ng0996-33.
  • Howe L, Auston D, Grant P, John S, Cook RG, Workman JL, Pillus L. 2001. Histone H3 specific acetyltransferases are essential for cell cycle progression. Genes Dev 15:3144–3154. http://dx.doi.org/10.1101/gad.931401.
  • Scott EK, Lee T, Luo L. 2001. enok encodes a Drosophila putative histone acetyltransferase required for mushroom body neuroblast proliferation. Curr Biol 11:99–104. http://dx.doi.org/10.1016/S0960-9822(01)00020-3.
  • Arboleda VA, Lee H, Dorrani N, Zadeh N, Willis M, Macmurdo CF, Manning MA, Kwan A, Hudgins L, Barthelemy F, Miceli MC, Quintero-Rivera F, Kantarci S, Strom SP, Deignan JL, Center UCG, Grody WW, Vilain E, Nelson SF. 2015. De novo nonsense mutations in KAT6A, a lysine acetyl-transferase gene, cause a syndrome including microcephaly and global developmental delay. Am J Hum Genet 96:498–506. http://dx.doi.org/10.1016/j.ajhg.2015.01.017.
  • Tham E, Lindstrand A, Santani A, Malmgren H, Nesbitt A, Dubbs HA, Zackai EH, Parker MJ, Millan F, Rosenbaum K, Wilson GN, Nordgren A. 2015. Dominant mutations in KAT6A cause intellectual disability with recognizable syndromic features. Am J Hum Genet 96:507–513. http://dx.doi.org/10.1016/j.ajhg.2015.01.016.
  • Campeau PM, Kim JC, Lu JT, Schwartzentruber JA, Abdul-Rahman OA, Schlaubitz S, Murdock DM, Jiang MM, Lammer EJ, Enns GM, Rhead WJ, Rowland J, Robertson SP, Cormier-Daire V, Bainbridge MN, Yang XJ, Gingras MC, Gibbs RA, Rosenblatt DS, Majewski J, Lee BH. 2012. Mutations in KAT6B, encoding a histone acetyltransferase, cause genitopatellar syndrome. Am J Hum Genet 90:282–289. http://dx.doi.org/10.1016/j.ajhg.2011.11.023.
  • Campeau PM, Lu JT, Dawson BC, Fokkema IF, Robertson SP, Gibbs RA, Lee BH. 2012. The KAT6B-related disorders genitopatellar syndrome and Ohdo/SBBYS syndrome have distinct clinical features reflecting distinct molecular mechanisms. Hum Mutat 33:1520–1525. http://dx.doi.org/10.1002/humu.22141.
  • Clayton-Smith J, O'Sullivan J, Daly S, Bhaskar S, Day R, Anderson B, Voss AK, Thomas T, Biesecker LG, Smith P, Fryer A, Chandler KE, Kerr B, Tassabehji M, Lynch SA, Krajewska-Walasek M, McKee S, Smith J, Sweeney E, Mansour S, Mohammed S, Donnai D, Black G. 2011. Whole-exome-sequencing identifies mutations in histone acetyltransferase gene KAT6B in individuals with the Say-Barber-Biesecker variant of Ohdo syndrome. Am J Hum Genet 89:675–681. http://dx.doi.org/10.1016/j.ajhg.2011.10.008.
  • Kraft M, Cirstea IC, Voss AK, Thomas T, Goehring I, Sheikh BN, Gordon L, Scott H, Smyth GK, Ahmadian MR, Trautmann U, Zenker M, Tartaglia M, Ekici A, Reis A, Dorr HG, Rauch A, Thiel CT. 2011. Disruption of the histone acetyltransferase MYST4 leads to a Noonan syndrome-like phenotype and hyperactivated MAPK signaling in humans and mice. J Clin Invest 121:3479–3491. http://dx.doi.org/10.1172/JCI43428.
  • Simpson MA, Deshpande C, Dafou D, Vissers LE, Woollard WJ, Holder SE, Gillessen-Kaesbach G, Derks R, White SM, Cohen-Snuijf R, Kant SG, Hoefsloot LH, Reardon W, Brunner HG, Bongers EM, Trembath RC. 2012. De novo mutations of the gene encoding the histone acetyltransferase KAT6B cause genitopatellar syndrome. Am J Hum Genet 90:290–294. http://dx.doi.org/10.1016/j.ajhg.2011.11.024.
  • Yu HC, Geiger EA, Medne L, Zackai EH, Shaikh TH. 2014. An individual with blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) and additional features expands the phenotype associated with mutations in KAT6B. Am J Med Genet A 164A:950–957. http://dx.doi.org/10.1002/ajmg.a.36379.
  • Northcott PA, Nakahara Y, Wu X, Feuk L, Ellison DW, Croul S, Mack S, Kongkham PN, Peacock J, Dubuc A, Ra YS, Zilberberg K, McLeod J, Scherer SW, Sunil Rao J, Eberhart CG, Grajkowska W, Gillespie Y, Lach B, Grundy R, Pollack IF, Hamilton RL, Van Meter T, Carlotti CG, Boop F, Bigner D, Gilbertson RJ, Rutka JT, Taylor MD. 2009. Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat Genet 41:465–472. http://dx.doi.org/10.1038/ng.336.
  • Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, Lawrence MS, Zhsng CZ, Wala J, Mermel CH, Sougnez C, Gabriel SB, Hernandez B, Shen H, Laird PW, Getz G, Meyerson M, Beroukhim R. 2013. Pan-cancer patterns of somatic copy number alteration. Nat Genet 45:1134–1140. http://dx.doi.org/10.1038/ng.2760.
  • Reifsnyder C, Lowell J, Clarke A, Pillus L. 1996. Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases. Nat Genet 14:42–49. http://dx.doi.org/10.1038/ng0996-42.
  • Utley RT, Ikeda K, Grant PA, Cote J, Steger DJ, Eberharter A, John S, Workman JL. 1998. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394:498–502. http://dx.doi.org/10.1038/28886.
  • Grant PA, Duggan L, Cote J, Roberts SM, Brownell JE, Candau R, Ohba R, Owen-Hughes T, Allis CD, Winston F, Berger SL, Workman JL. 1997. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev 11:1640–1650. http://dx.doi.org/10.1101/gad.11.13.1640.
  • John S, Howe L, Tafrov ST, Grant PA, Sternglanz R, Workman JL. 2000. The something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF(II)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex. Genes Dev 14:1196–1208. http://dx.doi.org/10.1101/gad.14.10.1196.
  • Howe L, Kusch T, Muster N, Chaterji R, Yates JR, III, Workman JL. 2002. Yng1p modulates the activity of Sas3p as a component of the yeast NuA3 histone acetyltransferase complex. Mol Cell Biol 22:5047–5053. http://dx.doi.org/10.1128/MCB.22.14.5047-5053.2002.
  • Taverna SD, Ilin S, Rogers RS, Tanny JC, Lavender H, Li H, Baker L, Boyle J, Blair LP, Chait BT, Patel DJ, Aitchison JD, Tackett AJ, Allis CD. 2006. Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Mol Cell 24:785–796. http://dx.doi.org/10.1016/j.molcel.2006.10.026.
  • Gilbert TM, McDaniel SL, Byrum SD, Cades JA, Dancy BC, Wade H, Tackett AJ, Strahl BD, Taverna SD. 2014. A PWWP domain-containing protein targets the NuA3 acetyltransferase complex via histone H3 lysine 36 trimethylation to coordinate transcriptional elongation at coding regions. Mol Cell Proteomics 13:2883–2895. http://dx.doi.org/10.1074/mcp.M114.038224.
  • Vicente-Munoz S, Romero P, Magraner-Pardo L, Martinez-Jimenez CP, Tordera V, Pamblanco M. 2014. Comprehensive analysis of interacting proteins and genome-wide location studies of the Sas3-dependent NuA3 histone acetyltransferase complex. FEBS Open Bio 4:996–1006. http://dx.doi.org/10.1016/j.fob.2014.11.001.
  • Champagne N, Bertos NR, Pelletier N, Wang AH, Vezmar M, Yang Y, Heng HH, Yang XJ. 1999. Identification of a human histone acetyltransferase related to monocytic leukemia zinc finger protein. J Biol Chem 274:28528–28536. http://dx.doi.org/10.1074/jbc.274.40.28528.
  • Doyon Y, Cayrou C, Ullah M, Landry AJ, Cote V, Selleck W, Lane WS, Tan S, Yang XJ, Cote J. 2006. ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21:51–64. http://dx.doi.org/10.1016/j.molcel.2005.12.007.
  • Ullah M, Pelletier N, Xiao L, Zhao SP, Wang K, Degerny C, Tahmasebi S, Cayrou C, Doyon Y, Goh SL, Champagne N, Cote J, Yang XJ. 2008. Molecular architecture of quartet MOZ/MORF histone acetyltransferase complexes. Mol Cell Biol 28:6828–6843. http://dx.doi.org/10.1128/MCB.01297-08.
  • Huang F, Saraf A, Florens L, Kusch T, Swanson SK, Szerszen LT, Li G, Dutta A, Washburn MP, Abmayr SM, Workman JL. The Enok acetyltransferase complex interacts with Elg1 and negatively regulates PCNA unloading to promote the G1/S transition. Genes Dev, in press.
  • Hu Y, Flockhart I, Vinayagam A, Bergwitz C, Berger B, Perrimon N, Mohr SE. 2011. An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinformatics 12:357. http://dx.doi.org/10.1186/1471-2105-12-357.
  • Gordon PM, Soliman MA, Bose P, Trinh Q, Sensen CW, Riabowol K. 2008. Interspecies data mining to predict novel ING-protein interactions in human. BMC Genomics 9:426. http://dx.doi.org/10.1186/1471-2164-9-426.
  • Champagne KS, Saksouk N, Pena PV, Johnson K, Ullah M, Yang XJ, Cote J, Kutateladze TG. 2008. The crystal structure of the ING5 PHD finger in complex with an H3K4me3 histone peptide. Proteins 72:1371–1376. http://dx.doi.org/10.1002/prot.22140.
  • Qiu Y, Liu L, Zhao C, Han C, Li F, Zhang J, Wang Y, Li G, Mei Y, Wu M, Wu J, Shi Y. 2012. Combinatorial readout of unmodified H3R2 and acetylated H3K14 by the tandem PHD finger of MOZ reveals a regulatory mechanism for HOXA9 transcription. Genes Dev 26:1376–1391. http://dx.doi.org/10.1101/gad.188359.112.
  • Ali M, Yan K, Lalonde ME, Degerny C, Rothbart SB, Strahl BD, Cote J, Yang XJ, Kutateladze TG. 2012. Tandem PHD fingers of MORF/MOZ acetyltransferases display selectivity for acetylated histone H3 and are required for the association with chromatin. J Mol Biol 424:328–338. http://dx.doi.org/10.1016/j.jmb.2012.10.004.
  • Dreveny I, Deeves SE, Fulton J, Yue B, Messmer M, Bhattacharya A, Collins HM, Heery DM. 2014. The double PHD finger domain of MOZ/MYST3 induces alpha-helical structure of the histone H3 tail to facilitate acetylation and methylation sampling and modification. Nucleic Acids Res 42:822–835. http://dx.doi.org/10.1093/nar/gkt931.
  • Lalonde ME, Avvakumov N, Glass KC, Joncas FH, Saksouk N, Holliday M, Paquet E, Yan K, Tong Q, Klein BJ, Tan S, Yang XJ, Kutateladze TG, Cote J. 2013. Exchange of associated factors directs a switch in HBO1 acetyltransferase histone tail specificity. Genes Dev 27:2009–2024. http://dx.doi.org/10.1101/gad.223396.113.
  • Liu L, Qin S, Zhang J, Ji P, Shi Y, Wu J. 2012. Solution structure of an atypical PHD finger in BRPF2 and its interaction with DNA. J Struct Biol 180:165–173. http://dx.doi.org/10.1016/j.jsb.2012.06.014.
  • Qin S, Jin L, Zhang J, Liu L, Ji P, Wu M, Wu J, Shi Y. 2011. Recognition of unmodified histone H3 by the first PHD finger of bromodomain-PHD finger protein 2 provides insights into the regulation of histone acetyltransferases monocytic leukemic zinc-finger protein (MOZ) and MOZ-related factor (MORF). J Biol Chem 286:36944–36955. http://dx.doi.org/10.1074/jbc.M111.244400.
  • Klein BJ, Muthurajan UM, Lalonde ME, Gibson MD, Andrews FH, Hepler M, Machida S, Yan K, Kurumizaka H, Poirier MG, Cote J, Luger K, Kutateladze TG. 2016. Bivalent interaction of the PZP domain of BRPF1 with the nucleosome impacts chromatin dynamics and acetylation. Nucleic Acids Res 44:472–484. http://dx.doi.org/10.1093/nar/gkv1321.
  • Lubula MY, Eckenroth BE, Carlson S, Poplawski A, Chruszcz M, Glass KC. 2014. Structural insights into recognition of acetylated histone ligands by the BRPF1 bromodomain. FEBS Lett 588:3844–3854. http://dx.doi.org/10.1016/j.febslet.2014.09.028.
  • Poplawski A, Hu K, Lee W, Natesan S, Peng D, Carlson S, Shi X, Balaz S, Markley JL, Glass KC. 2014. Molecular insights into the recognition of N-terminal histone modifications by the BRPF1 bromodomain. J Mol Biol 426:1661–1676. http://dx.doi.org/10.1016/j.jmb.2013.12.007.
  • Vezzoli A, Bonadies N, Allen MD, Freund SM, Santiveri CM, Kvinlaug BT, Huntly BJ, Gottgens B, Bycroft M. 2010. Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpf1. Nat Struct Mol Biol 17:617–619. http://dx.doi.org/10.1038/nsmb.1797.
  • Berger J, Senti KA, Senti G, Newsome TP, Asling B, Dickson BJ, Suzuki T. 2008. Systematic identification of genes that regulate neuronal wiring in the Drosophila visual system. PLoS Genet 4:e1000085. http://dx.doi.org/10.1371/journal.pgen.1000085.
  • Bhaumik SR, Smith E, Shilatifard A. 2007. Covalent modifications of histones during development and disease pathogenesis. Nat Struct Mol Biol 14:1008–1016. http://dx.doi.org/10.1038/nsmb1337.
  • Voss AK, Collin C, Dixon MP, Thomas T. 2009. Moz and retinoic acid coordinately regulate H3K9 acetylation, Hox gene expression, and segment identity. Dev Cell 17:674–686. http://dx.doi.org/10.1016/j.devcel.2009.10.006.
  • Huang F, Paulson A, Dutta A, Venkatesh S, Smolle M, Abmayr SM, Workman JL. 2014. Histone acetyltransferase Enok regulates oocyte polarization by promoting expression of the actin nucleation factor spire. Genes Dev 28:2750–2763. http://dx.doi.org/10.1101/gad.249730.114.
  • Simo-Riudalbas L, Perez-Salvia M, Setien F, Villanueva A, Moutinho C, Martinez-Cardus A, Moran S, Berdasco M, Gomez A, Vidal E, Soler M, Heyn H, Vaquero A, de la Torre C, Barcelo-Batllori S, Vidal A, Roz L, Pastorino U, Szakszon K, Borck G, Moura CS, Carneiro F, Zondervan I, Savola S, Iwakawa R, Kohno T, Yokota J, Esteller M. 2015. KAT6B is a tumor suppressor histone H3 lysine 23 acetyltransferase undergoing genomic loss in small cell lung cancer. Cancer Res 75:3936–3945. http://dx.doi.org/10.1158/0008-5472.CAN-14-3702.
  • Sheikh BN, Phipson B, El-Saafin F, Vanyai HK, Downer NL, Bird MJ, Kueh AJ, May RE, Smyth GK, Voss AK, Thomas T. 2015. MOZ (MYST3, KAT6A) inhibits senescence via the INK4A-ARF pathway. Oncogene 34:5807–5820. http://dx.doi.org/10.1038/onc.2015.33.
  • Feller C, Forne I, Imhof A, Becker PB. 2015. Global and specific responses of the histone acetylome to systematic perturbation. Mol Cell 57:559–571. http://dx.doi.org/10.1016/j.molcel.2014.12.008.
  • Eustice M, Pillus L. 2014. Unexpected function of the glucanosyltransferase Gas1 in the DNA damage response linked to histone H3 acetyltransferases in Saccharomyces cerevisiae. Genetics 196:1029–1039. http://dx.doi.org/10.1534/genetics.113.158824.
  • Xin T, Xuan T, Tan J, Li M, Zhao G. 2013. The Drosophila putative histone acetyltransferase Enok maintains female germline stem cells through regulating Bruno and the niche. Dev Biol 384:1–12. http://dx.doi.org/10.1016/j.ydbio.2013.10.001.
  • Strubbe G, Popp C, Schmidt A, Pauli A, Ringrose L, Beisel C, Paro R. 2011. Polycomb purification by in vivo biotinylation tagging reveals cohesin and Trithorax group proteins as interaction partners. Proc Natl Acad Sci U S A 108:5572–5577. http://dx.doi.org/10.1073/pnas.1007916108.
  • Peng JC, Valouev A, Liu N, Lin H. 2016. Piwi negatively regulates Polycomb group proteins in maintaining germline stem cells and oogenesis in Drosophila through negative regulation of Polycomb group proteins. Nat Genet 48:283–291. http://dx.doi.org/10.1038/ng.3486.
  • Kai T, Williams D, Spradling AC. 2005. The expression profile of purified Drosophila germline stem cells. Dev Biol 283:486–502. http://dx.doi.org/10.1016/j.ydbio.2005.04.018.
  • Smulders-Srinivasan TK, Szakmary A, Lin H. 2010. A Drosophila chromatin factor interacts with the Piwi-interacting RNA mechanism in niche cells to regulate germline stem cell self-renewal. Genetics 186:573–583. http://dx.doi.org/10.1534/genetics.110.119081.
  • Rokudai S, Laptenko O, Arnal SM, Taya Y, Kitabayashi I, Prives C. 2013. MOZ increases p53 acetylation and premature senescence through its complex formation with PML. Proc Natl Acad Sci U S A 110:3895–3900. http://dx.doi.org/10.1073/pnas.1300490110.
  • Rokudai S, Aikawa Y, Tagata Y, Tsuchida N, Taya Y, Kitabayashi I. 2009. Monocytic leukemia zinc finger (MOZ) interacts with p53 to induce p21 expression and cell-cycle arrest. J Biol Chem 284:237–244. http://dx.doi.org/10.1074/jbc.M805101200.
  • Perez-Campo FM, Costa G, Lie ALM, Stifani S, Kouskoff V, Lacaud G. 2014. MOZ-mediated repression of p16(INK)(4)(a) is critical for the self-renewal of neural and hematopoietic stem cells. Stem Cells 32:1591–1601. http://dx.doi.org/10.1002/stem.1606.
  • Yang XJ. 2015. MOZ and MORF acetyltransferases: Molecular interaction, animal development and human disease. Biochim Biophys Acta 1853:1818–1826. http://dx.doi.org/10.1016/j.bbamcr.2015.04.014.
  • Katsumoto T, Aikawa Y, Iwama A, Ueda S, Ichikawa H, Ochiya T, Kitabayashi I. 2006. MOZ is essential for maintenance of hematopoietic stem cells. Genes Dev 20:1321–1330. http://dx.doi.org/10.1101/gad.1393106.
  • Kitabayashi I, Aikawa Y, Nguyen LA, Yokoyama A, Ohki M. 2001. Activation of AML1-mediated transcription by MOZ and inhibition by the MOZ-CBP fusion protein. EMBO J 20:7184–7196. http://dx.doi.org/10.1093/emboj/20.24.7184.
  • Paggetti J, Largeot A, Aucagne R, Jacquel A, Lagrange B, Yang XJ, Solary E, Bastie JN, Delva L. 2010. Crosstalk between leukemia-associated proteins MOZ and MLL regulates HOX gene expression in human cord blood CD34+ cells. Oncogene 29:5019–5031. http://dx.doi.org/10.1038/onc.2010.254.
  • Sheikh BN, Downer NL, Phipson B, Vanyai HK, Kueh AJ, McCarthy DJ, Smyth GK, Thomas T, Voss AK. 2015. MOZ and BMI1 play opposing roles during Hox gene activation in ES cells and in body segment identity specification in vivo. Proc Natl Acad Sci U S A 112:5437–5442. http://dx.doi.org/10.1073/pnas.1422872112.
  • Alharbi RA, Pettengell R, Pandha HS, Morgan R. 2013. The role of HOX genes in normal hematopoiesis and acute leukemia. Leukemia 27:1000–1008. http://dx.doi.org/10.1038/leu.2012.356.
  • You L, Yan K, Zou J, Zhao H, Bertos NR, Park M, Wang E, Yang XJ. 2015. The lysine acetyltransferase activator Brpf1 governs dentate gyrus development through neural stem cells and progenitors. PLoS Genet 11:e1005034. http://dx.doi.org/10.1371/journal.pgen.1005034.
  • Carapeti M, Aguiar RC, Goldman JM, Cross NC. 1998. A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood 91:3127–3133.
  • Liang J, Prouty L, Williams BJ, Dayton MA, Blanchard KL. 1998. Acute mixed lineage leukemia with an inv(8)(p11q13) resulting in fusion of the genes for MOZ and TIF2. Blood 92:2118–2122.
  • Esteyries S, Perot C, Adelaide J, Imbert M, Lagarde A, Pautas C, Olschwang S, Birnbaum D, Chaffanet M, Mozziconacci MJ. 2008. NCOA3, a new fusion partner for MOZ/MYST3 in M5 acute myeloid leukemia. Leukemia 22:663–665. http://dx.doi.org/10.1038/sj.leu.2404930.
  • Chaffanet M, Gressin L, Preudhomme C, Soenen-Cornu V, Birnbaum D, Pebusque MJ. 2000. MOZ is fused to p300 in an acute monocytic leukemia with t(8;22). Genes Chromosomes Cancer 28:138–144. http://dx.doi.org/10.1002/(SICI)1098-2264(200006)28:2<138::AID-GCC2>3.0.CO;2-2.
  • Kitabayashi I, Aikawa Y, Yokoyama A, Hosoda F, Nagai M, Kakazu N, Abe T, Ohki M. 2001. Fusion of MOZ and p300 histone acetyltransferases in acute monocytic leukemia with a t(8;22)(p11;q13) chromosome translocation. Leukemia 15:89–94. http://dx.doi.org/10.1038/sj.leu.2401983.
  • Panagopoulos I, Fioretos T, Isaksson M, Samuelsson U, Billstrom R, Strombeck B, Mitelman F, Johansson B. 2001. Fusion of the MORF and CBP genes in acute myeloid leukemia with the t(10;16)(q22;p13). Hum Mol Genet 10:395–404. http://dx.doi.org/10.1093/hmg/10.4.395.
  • Chinen Y, Taki T, Tsutsumi Y, Kobayashi S, Matsumoto Y, Sakamoto N, Kuroda J, Horiike S, Nishida K, Ohno H, Uike N, Taniwaki M. 2014. The leucine twenty homeobox (LEUTX) gene, which lacks a histone acetyltransferase domain, is fused to KAT6A in therapy-related acute myeloid leukemia with t(8;19)(p11;q13). Genes Chromosomes Cancer 53:299–308. http://dx.doi.org/10.1002/gcc.22140.
  • Deguchi K, Ayton PM, Carapeti M, Kutok JL, Snyder CS, Williams IR, Cross NC, Glass CK, Cleary ML, Gilliland DG. 2003. MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell 3:259–271. http://dx.doi.org/10.1016/S1535-6108(03)00051-5.
  • Aikawa Y, Katsumoto T, Zhang P, Shima H, Shino M, Terui K, Ito E, Ohno H, Stanley ER, Singh H, Tenen DG, Kitabayashi I. 2010. PU.1-mediated upregulation of CSF1R is crucial for leukemia stem cell potential induced by MOZ-TIF2. Nat Med 16:580–585. http://dx.doi.org/10.1038/nm.2122.
  • Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N, Rowan R, Amaral S, Curley D, Williams IR, Akashi K, Gilliland DG. 2004. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6:587–596. http://dx.doi.org/10.1016/j.ccr.2004.10.015.
  • Akhtar A, Becker PB. 2001. The histone H4 acetyltransferase MOF uses a C2HC zinc finger for substrate recognition. EMBO Rep 2:113–118. http://dx.doi.org/10.1093/embo-reports/kve022.
  • Shima H, Yamagata K, Aikawa Y, Shino M, Koseki H, Shimada H, Kitabayashi I. 2014. Bromodomain-PHD finger protein 1 is critical for leukemogenesis associated with MOZ-TIF2 fusion. Int J Hematol 99:21–31. http://dx.doi.org/10.1007/s12185-013-1466-x.
  • Zhu J, Sammons MA, Donahue G, Dou Z, Vedadi M, Getlik M, Barsyte-Lovejoy D, Al-awar R, Katona BW, Shilatifard A, Huang J, Hua X, Arrowsmith CH, Berger SL. 2015. Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth. Nature 525:206–211. http://dx.doi.org/10.1038/nature15251.
  • Sheikh BN, Lee SC, El-Saafin F, Vanyai HK, Hu Y, Pang SH, Grabow S, Strasser A, Nutt SL, Alexander WS, Smyth GK, Voss AK, Thomas T. 2015. MOZ regulates B-cell progenitors and, consequently, Moz haploinsufficiency dramatically retards MYC-induced lymphoma development. Blood 125:1910–1921. http://dx.doi.org/10.1182/blood-2014-08-594655.
  • Panagopoulos I, Gorunova L, Bjerkehagen B, Heim S. 2015. Novel KAT6B-KANSL1 fusion gene identified by RNA sequencing in retroperitoneal leiomyoma with t(10;17)(q22;q21). PLoS One 10:e0117010. http://dx.doi.org/10.1371/journal.pone.0117010.
  • Vanyai HK, Thomas T, Voss AK. 2015. Mesodermal expression of Moz is necessary for cardiac septum development. Dev Biol 403:22–29. http://dx.doi.org/10.1016/j.ydbio.2015.04.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.