59
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Human Insulin Growth Factor 2 mRNA Binding Protein 2 Increases MicroRNA 33a/b Inhibition of Liver ABCA1 Expression and Alters Low-Density Apolipoprotein Levels in Mice

, , , , &
Article: e00058-20 | Received 13 Feb 2020, Accepted 26 May 2020, Published online: 03 Mar 2023

REFERENCES

  • Siddiqi HK, Kiss D, Rader D. 2015. HDL-cholesterol and cardiovascular disease: rethinking our approach. Curr Opin Cardiol 30:536–542. https://doi.org/10.1097/HCO.0000000000000211.
  • Wang S, Smith JD. 2014. ABCA1 and nascent HDL biogenesis. Biofactors 40:547–554. https://doi.org/10.1002/biof.1187.
  • Nofer JR, Remaley AT. 2005. Tangier disease: still more questions than answers. Cell Mol Life Sci 62:2150–2160. https://doi.org/10.1007/s00018-005-5125-0.
  • Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA, Tontonoz P. 2000. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc Natl Acad Sci U S A 97:12097–12102. https://doi.org/10.1073/pnas.200367697.
  • Rottiers V, Naar AM. 2012. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13:239–250. https://doi.org/10.1038/nrm3313.
  • Yokoyama S, Arakawa R, Wu CA, Iwamoto N, Lu R, Tsujita M, Abe-Dohmae S. 2012. Calpain-mediated ABCA1 degradation: post-translational regulation of ABCA1 for HDL biogenesis. Biochim Biophys Acta 1821:547–551. https://doi.org/10.1016/j.bbalip.2011.07.017.
  • Krol J, Loedige I, Filipowicz W. 2010. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610. https://doi.org/10.1038/nrg2843.
  • Horie T, Nishino T, Baba O, Kuwabara Y, Nakao T, Nishiga M, Usami S, Izuhara M, Nakazeki F, Ide Y, Koyama S, Sowa N, Yahagi N, Shimano H, Nakamura T, Hasegawa K, Kume N, Yokode M, Kita T, Kimura T, Ono K. 2014. MicroRNA-33b knock-in mice for an intron of sterol regulatory element-binding factor 1 (Srebf1) exhibit reduced HDL-C in vivo. Sci Rep 4:5312. https://doi.org/10.1038/srep05312.
  • Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ, Fernandez-Hernando C. 2010. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328:1570–1573. https://doi.org/10.1126/science.1189862.
  • Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, Näär AM. 2010. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328:1566–1569. https://doi.org/10.1126/science.1189123.
  • Marquart TJ, Allen RM, Ory DS, Baldan A. 2010. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci U S A 107:12228–12232. https://doi.org/10.1073/pnas.1005191107.
  • Horie T, Ono K, Horiguchi M, Nishi H, Nakamura T, Nagao K, Kinoshita M, Kuwabara Y, Marusawa H, Iwanaga Y, Hasegawa K, Yokode M, Kimura T, Kita T. 2010. MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci U S A 107:17321–17326. https://doi.org/10.1073/pnas.1008499107.
  • Bell JL, Wachter K, Muhleck B, Pazaitis N, Kohn M, Lederer M, Huttelmaier S. 2013. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell Mol Life Sci 70:2657–2675. https://doi.org/10.1007/s00018-012-1186-z.
  • Degrauwe N, Suva ML, Janiszewska M, Riggi N, Stamenkovic I. 2016. IMPs: an RNA-binding protein family that provides a link between stem cell maintenance in normal development and cancer. Genes Dev 30:2459–2474. https://doi.org/10.1101/gad.287540.116.
  • Cao J, Mu Q, Huang H. 2018. The roles of insulin-like growth factor 2 mRNA-binding protein 2 in cancer and cancer stem cells. Stem Cells Int 2018:4217259. https://doi.org/10.1155/2018/4217259.
  • Nielsen J, Christiansen J, Lykke-Andersen J, Johnsen AH, Wewer UM, Nielsen FC. 1999. A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol Cell Biol 19:1262–1270. https://doi.org/10.1128/mcb.19.2.1262.
  • Simon Y, Kessler SM, Bohle RM, Haybaeck J, Kiemer AK. 2014. The insulin-like growth factor 2 (IGF2) mRNA-binding protein p62/IGF2BP2-2 as a promoter of NAFLD and HCC? Gut 63:861–863. https://doi.org/10.1136/gutjnl-2013-305736.
  • Dai N, Zhao L, Wrighting D, Kramer D, Majithia A, Wang Y, Cracan V, Borges-Rivera D, Mootha VK, Nahrendorf M, Thorburn DR, Minichiello L, Altshuler D, Avruch J. 2015. IGF2BP2/IMP2-deficient mice resist obesity through enhanced translation of Ucp1 mRNA and other mRNAs encoding mitochondrial proteins. Cell Metab 21:609–621. https://doi.org/10.1016/j.cmet.2015.03.006.
  • Saxena R, Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, Novartis Institutes of BioMedical Research, Voight BF, Lyssenko V, Burtt NP, de Bakker PIW, Chen H, Roix JJ, Kathiresan S, Hirschhorn JN, Daly MJ, Hughes TE, Groop L, Altshuler D, Almgren P, Florez JC, Meyer J, Ardlie K, Bengtsson Boström K, Isomaa B, Lettre G, Lindblad U, Lyon HN, Melander O, Newton-Cheh C, Nilsson P, Orho-Melander M, Råstam L, Speliotes EK, Taskinen M-R, Tuomi T, Guiducci C, Berglund A, Carlson J, Gianniny L, Hackett R, Hall L, Holmkvist J, Laurila E, Sjögren M, Sterner M, Surti A, Svensson M, Svensson M, Tewhey R, Blumenstiel B, Parkin M, Defelice M, Barry R, Brodeur W, Camarata J, Chia N, Fava M, Gibbons J, Handsaker B, Healy C, Nguyen K, Gates C, Sougnez C, Gage D, Nizzari M, Gabriel SB, Chirn G-W, Ma Q, Parikh H, Richardson D, Ricke D, Purcell S. 2007. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336. https://doi.org/10.1126/science.1142358.
  • Portnoy V, Lin SH, Li KH, Burlingame A, Hu ZH, Li H, Li LC. 2016. saRNA-guided Ago2 targets the RITA complex to promoters to stimulate transcription. Cell Res 26:320–335. https://doi.org/10.1038/cr.2016.22.
  • Laggai S, Kessler SM, Boettcher S, Lebrun V, Gemperlein K, Lederer E, Leclercq IA, Mueller R, Hartmann RW, Haybaeck J, Kiemer AK. 2014. The IGF2 mRNA binding protein p62/IGF2BP2-2 induces fatty acid elongation as a critical feature of steatosis. J Lipid Res 55:1087–1097. https://doi.org/10.1194/jlr.M045500.
  • Brown MS, Goldstein JL. 1997. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331–340. https://doi.org/10.1016/s0092-8674(00)80213-5.
  • Peredo J, Villace P, Ortin J, de Lucas S. 2014. Human Staufen1 associates to miRNAs involved in neuronal cell differentiation and is required for correct dendritic formation. PLoS One 9:e113704. https://doi.org/10.1371/journal.pone.0113704.
  • He M, Yang Z, Abdellatif M, Sayed D. 2015. GTPase activating protein (Sh3 domain) binding protein 1 regulates the processing of microRNA-1 during cardiac hypertrophy. PLoS One 10:e0145112. https://doi.org/10.1371/journal.pone.0145112.
  • Sniderman AD, Thanassoulis G, Glavinovic T, Navar AM, Pencina M, Catapano A, Ference BA. 2019. Apolipoprotein B particles and cardiovascular disease: a narrative review. JAMA Cardiol 4:1287. https://doi.org/10.1001/jamacardio.2019.3780.
  • Macchi C, Sirtori CR, Corsini A, Santos RD, Watts GF, Ruscica M. 2019. A new dawn for managing dyslipidemias: the era of RNA-based therapies. Pharmacol Res 150:104413. https://doi.org/10.1016/j.phrs.2019.104413.
  • Rodriguez S, Eiriksdottir G, Gaunt TR, Harris TB, Launer LJ, Gudnason V, Day IN. 2010. IGF2BP1, IGF2BP2 and IGF2BP3 genotype, haplotype and genetic model studies in metabolic syndrome traits and diabetes. Growth Horm IGF Res 20:310–318. https://doi.org/10.1016/j.ghir.2010.04.002.
  • Sjogren M, Lyssenko V, Jonsson A, Berglund G, Nilsson P, Groop L, Orho-Melander M. 2008. The search for putative unifying genetic factors for components of the metabolic syndrome. Diabetologia 51:2242–2251. https://doi.org/10.1007/s00125-008-1151-4.
  • Wellcome Trust Case Control Consortium. 2007. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678. https://doi.org/10.1038/nature05911.
  • Tybl E, Shi FD, Kessler SM, Tierling S, Walter J, Bohle RM, Wieland S, Zhang J, Tan EM, Kiemer AK. 2011. Overexpression of the IGF2-mRNA binding protein p62 in transgenic mice induces a steatotic phenotype. J Hepatol 54:994–1001. https://doi.org/10.1016/j.jhep.2010.08.034.
  • Simon Y, Kessler SM, Gemperlein K, Bohle RM, Muller R, Haybaeck J, Kiemer AK. 2014. Elevated free cholesterol in a p62 overexpression model of non-alcoholic steatohepatitis. World J Gastroenterol 20:17839–17850. https://doi.org/10.3748/wjg.v20.i47.17839.
  • Maurice J, Manousou P. 2018. Non-alcoholic fatty liver disease. Clin Med (Lond) 18:245–250. https://doi.org/10.7861/clinmedicine.18-3-245.
  • Regue L, Minichiello L, Avruch J, Dai N. 2019. Liver-specific deletion of IGF2 mRNA binding protein-2/IMP2 reduces hepatic fatty acid oxidation and increases hepatic triglyceride accumulation. J Biol Chem 294:11944–11951. https://doi.org/10.1074/jbc.RA119.008778.
  • Greenwald WW, Chiou J, Yan J, Qiu Y, Dai N, Wang A, Nariai N, Aylward A, Han JY, Kadakia N, Regue L, Okino ML, Drees F, Kramer D, Vinckier N, Minichiello L, Gorkin D, Avruch J, Frazer KA, Sander M, Ren B, Gaulton KJ. 2019. Pancreatic islet chromatin accessibility and conformation reveals distal enhancer networks of type 2 diabetes risk. Nat Commun 10:2078. https://doi.org/10.1038/s41467-019-09975-4.
  • Liu W, Qin L, Yu H, Lv F, Wang Y. 2014. Apolipoprotein A-I and adenosine triphosphate-binding cassette transporter A1 expression alleviates lipid accumulation in hepatocytes. J Gastroenterol Hepatol 29:614–622. https://doi.org/10.1111/jgh.12430.
  • Key CC, Liu M, Kurtz CL, Chung S, Boudyguina E, Dinh TA, Bashore A, Phelan PE, Freedman BI, Osborne TF, Zhu X, Ma L, Sethupathy P, Biddinger SB, Parks JS. 2017. Hepatocyte ABCA1 deletion impairs liver insulin signaling and lipogenesis. Cell Rep 19:2116–2129. https://doi.org/10.1016/j.celrep.2017.05.032.
  • McNeish J, Aiello RJ, Guyot D, Turi T, Gabel C, Aldinger C, Hoppe KL, Roach ML, Royer LJ, de Wet J, Broccardo C, Chimini G, Francone OL. 2000. High density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of ATP-binding cassette transporter-1. Proc Natl Acad Sci U S A 97:4245–4250. https://doi.org/10.1073/pnas.97.8.4245.
  • Chung S, Timmins JM, Duong M, Degirolamo C, Rong S, Sawyer JK, Singaraja RR, Hayden MR, Maeda N, Rudel LL, Shelness GS, Parks JS. 2010. Targeted deletion of hepatocyte ABCA1 leads to very low density lipoprotein triglyceride overproduction and low density lipoprotein hypercatabolism. J Biol Chem 285:12197–12209. https://doi.org/10.1074/jbc.M109.096933.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.