36
Views
2
CrossRef citations to date
0
Altmetric
Research Article

LINC00997/MicroRNA 574-3p/CUL2 Promotes Cervical Cancer Development via Mitogen-Activated Protein Kinase Signaling

, , & ORCID Icon
Article: e00059-21 | Received 07 Feb 2021, Accepted 24 Apr 2021, Published online: 03 Mar 2023

REFERENCES

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492.
  • Arbyn M, Weiderpass E, Bruni L, de Sanjose S, Saraiya M, Ferlay J, Bray F. 2020. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Health 8:e191–e203. https://doi.org/10.1016/s2214-109X(19)30482-6.
  • Wentzensen N, Schiffman M. 2018. Accelerating cervical cancer control and prevention. Lancet Public Health 3:e6–e7. https://doi.org/10.1016/S2468-2667(17)30242-6.
  • Cegla P, Burchardt E, Roszak A, Czepczynski R, Kubiak A, Cholewinski W. 2019. Influence of biological parameters assessed in [18F]FDG PET/CT on overall survival in cervical cancer patients. Clin Nucl Med 44:860–863. https://doi.org/10.1097/RLU.0000000000002733.
  • Small W, Jr, Bacon MA, Bajaj A, Chuang LT, Fisher BJ, Harkenrider MM, Jhingran A, Kitchener HC, Mileshkin LR, Viswanathan AN, Gaffney DK. 2017. Cervical cancer: a global health crisis. Cancer 123:2404–2412. https://doi.org/10.1002/cncr.30667.
  • Rahmani Z, Mojarrad M, Moghbeli M. 2020. Long non-coding RNAs as the critical factors during tumor progressions among Iranian population: an overview. Cell Biosci 10:6. https://doi.org/10.1186/s13578-020-0373-0.
  • Li CH, Chen Y. 2016. Insight into the role of long noncoding RNA in cancer development and progression. Int Rev Cell Mol Biol 326:33–65. https://doi.org/10.1016/bs.ircmb.2016.04.001.
  • Gao YL, Zhao ZS, Zhang MY, Han LJ, Dong YJ, Xu B. 2017. Long noncoding RNA PVT1 facilitates cervical cancer progression via negative regulating of miR-424. Oncol Res 25:1391–1398. https://doi.org/10.3727/096504017X14881559833562.
  • Rui X, Xu Y, Jiang X, Ye W, Huang Y, Jiang J. 2018. Long non-coding RNA C5orf66-AS1 promotes cell proliferation in cervical cancer by targeting miR-637/RING1 axis. Cell Death Dis 9:1175. https://doi.org/10.1038/s41419-018-1228-z.
  • Peng L, Yuan X, Jiang B, Tang Z, Li GC. 2016. LncRNAs: key players and novel insights into cervical cancer. Tumour Biol 37:2779–2788. https://doi.org/10.1007/s13277-015-4663-9.
  • Du H, Chen Y. 2019. Competing endogenous RNA networks in cervical cancer: function, mechanism and perspective. J Drug Target 27:709–723. https://doi.org/10.1080/1061186X.2018.1505894.
  • Lou W, Ding B, Fu P. 2020. Pseudogene-derived lncRNAs and their miRNA sponging mechanism in human cancer. Front Cell Dev Biol 8:85. https://doi.org/10.3389/fcell.2020.00085.
  • Qi X, Zhang DH, Wu N, Xiao JH, Wang X, Ma W. 2015. ceRNA in cancer: possible functions and clinical implications. J Med Genet 52:710–718. https://doi.org/10.1136/jmedgenet-2015-103334.
  • Luan X, Wang Y. 2018. LncRNA XLOC_006390 facilitates cervical cancer tumorigenesis and metastasis as a ceRNA against miR-331-3p and miR-338-3p. J Gynecol Oncol 29:e95. https://doi.org/10.3802/jgo.2018.29.e95.
  • Shao S, Wang C, Wang S, Zhang H, Zhang Y. 2019. LncRNA STXBP5-AS1 suppressed cervical cancer progression via targeting miR-96-5p/PTEN axis. Biomed Pharmacother 117:109082. https://doi.org/10.1016/j.biopha.2019.109082.
  • Chang Y, Li N, Yuan W, Wang G, Wen J. 2019. LINC00997, a novel long noncoding RNA, contributes to metastasis via regulation of S100A11 in kidney renal clear cell carcinoma. Int J Biochem Cell Biol 116:105590. https://doi.org/10.1016/j.biocel.2019.105590.
  • Shi Z, Shen C, Yu C, Yang X, Shao J, Guo J, Zhu X, Zhou G. 2021. Long non-coding RNA LINC00997 silencing inhibits the progression and metastasis of colorectal cancer by sponging miR-512-3p. Bioengineered 12:627–639. https://doi.org/10.1080/21655979.2021.1882164.
  • Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. 2020. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med 19:1997–2007. https://doi.org/10.3892/etm.2020.8454.
  • Liu X, Yang Q, Yan J, Zhang X, Zheng M. 2019. LncRNA MNX1-AS1 promotes the progression of cervical cancer through activating MAPK pathway. J Cell Biochem 120:4268–4277. https://doi.org/10.1002/jcb.27712.
  • Wang XW, Zhang W. 2019. Long non-coding RNA cancer susceptibility candidate 2 inhibits the cell proliferation, invasion and angiogenesis of cervical cancer through the MAPK pathway. Eur Rev Med Pharmacol Sci 23:3261–3269. https://doi.org/10.26355/eurrev_201904_17687.
  • Xiao H, Liu Y, Liang P, Wang B, Tan H, Zhang Y, Gao X, Gao J. 2018. TP53TG1 enhances cisplatin sensitivity of non-small cell lung cancer cells through regulating miR-18a/PTEN axis. Cell Biosci 8:23. https://doi.org/10.1186/s13578-018-0221-7.
  • Ye J, Chu C, Chen M, Shi Z, Gan S, Qu F, Pan X, Yang Q, Tian Y, Wang L, Yang W, Cui X. 2019. TROAP regulates prostate cancer progression via the WNT3/survivin signalling pathways. Oncol Rep 41:1169–1179. https://doi.org/10.3892/or.2018.6854.
  • Jiang L, Wang R, Fang L, Ge X, Chen L, Zhou M, Zhou Y, Xiong W, Hu Y, Tang X, Li G, Li Z. 2019. HCP5 is a SMAD3-responsive long non-coding RNA that promotes lung adenocarcinoma metastasis via miR-203/SNAI axis. Theranostics 9:2460–2474. https://doi.org/10.7150/thno.31097.
  • Qin G, Tu X, Li H, Cao P, Chen X, Song J, Han H, Li Y, Guo B, Yang L, Yan P, Li P, Gao C, Zhang J, Yang Y, Zheng J, Ju HQ, Lu L, Wang X, Yu C, Sun Y, Xing B, Ji H, Lin D, He F, Zhou G. 2020. Long noncoding RNA p53-stabilizing and activating RNA promotes p53 signaling by inhibiting heterogeneous nuclear ribonucleoprotein K deSUMOylation and suppresses hepatocellular carcinoma. Hepatology 71:112–129. https://doi.org/10.1002/hep.30793.
  • He F, Song Z, Chen H, Chen Z, Yang P, Li W, Yang Z, Zhang T, Wang F, Wei J, Wei F, Wang Q, Cao J. 2019. Long noncoding RNA PVT1-214 promotes proliferation and invasion of colorectal cancer by stabilizing Lin28 and interacting with miR-128. Oncogene 38:164–179. https://doi.org/10.1038/s41388-018-0432-8.
  • Kong F, Deng X, Kong X, Du Y, Li L, Zhu H, Wang Y, Xie D, Guha S, Li Z, Guan M, Xie K. 2018. ZFPM2-AS1, a novel lncRNA, attenuates the p53 pathway and promotes gastric carcinogenesis by stabilizing MIF. Oncogene 37:5982–5996. https://doi.org/10.1038/s41388-018-0387-9.
  • Levy JMM, Towers CG, Thorburn A. 2017. Targeting autophagy in cancer. Nat Rev Cancer 17:528–542. https://doi.org/10.1038/nrc.2017.53.
  • Antunes F, Erustes AG, Costa AJ, Nascimento AC, Bincoletto C, Ureshino RP, Pereira GJS, Smaili SS. 2018. Autophagy and intermittent fasting: the connection for cancer therapy? Clinics (Sao Paulo) 73:e814s. https://doi.org/10.6061/clinics/2018/e814s.
  • Zhang J, Liu L, Li J, Le TD. 2018. LncmiRSRN: identification and analysis of long non-coding RNA related miRNA sponge regulatory network in human cancer. Bioinformatics 34:4232–4240. https://doi.org/10.1093/bioinformatics/bty525.
  • Liu H, Lei C, He Q, Pan Z, Xiao D, Tao Y. 2018. Nuclear functions of mammalian microRNAs in gene regulation, immunity and cancer. Mol Cancer 17:64. https://doi.org/10.1186/s12943-018-0765-5.
  • Zhang P, Zhu J, Zheng Y, Zhang H, Sun H, Gao S. 2019. miRNA-574-3p inhibits metastasis and chemoresistance of epithelial ovarian cancer (EOC) by negatively regulating epidermal growth factor receptor (EGFR). Am J Transl Res 11:4151–4165.
  • Li W-C, Wu Y-Q, Gao B, Wang C-Y, Zhang J-J. 2019. MiRNA-574-3p inhibits cell progression by directly targeting CCND2 in colorectal cancer. Biosci Rep 39:BSR20190976. https://doi.org/10.1042/BSR20190976.
  • Wang M, Zhang R, Zhang S, Xu R, Yang Q. 2019. MicroRNA-574-3p regulates epithelial mesenchymal transition and cisplatin resistance via targeting ZEB1 in human gastric carcinoma cells. Gene 700:110–119. https://doi.org/10.1016/j.gene.2019.03.043.
  • Bai Y, Ding L, Baker S, Bai JM, Rath E, Jiang F, Wu J, Jiang H, Stuart G. 2016. Dissecting the biological relationship between TCGA miRNA and mRNA sequencing data using MMiRNA-Viewer. BMC Bioinformatics 17:336. https://doi.org/10.1186/s12859-016-1219-y.
  • Xu J, Fang Y, Wang X, Wang F, Tian Q, Li Y, Xie X, Cheng X, Lu W. 2016. CUL2 overexpression driven by CUL2/E2F1/miR-424 regulatory loop promotes HPV16 E7 induced cervical carcinogenesis. Oncotarget 7:31520–31533. https://doi.org/10.18632/oncotarget.9127.
  • Metzger R, Heukamp L, Drebber U, Bollschweiler E, Zander T, Hoelscher AH, Warnecke-Eberz U. 2010. CUL2 and STK11 as novel response-predictive genes for neoadjuvant radiochemotherapy in esophageal cancer. Pharmacogenomics 11:1105–1113. https://doi.org/10.2217/pgs.10.76.
  • Michail O, Moris D, Theocharis S, Griniatsos J. 2018. Cullin-1 and -2 protein expression in colorectal cancer: correlation with clinicopathological variables. In Vivo 32:391–396. https://doi.org/10.21873/invivo.11251.
  • Peng W, Fan H. 2016. Long noncoding RNA CCHE1 indicates a poor prognosis of hepatocellular carcinoma and promotes carcinogenesis via activation of the ERK/MAPK pathway. Biomed Pharmacother 83:450–455. https://doi.org/10.1016/j.biopha.2016.06.056.
  • Han Y, Wu Z, Wu T, Huang Y, Cheng Z, Li X, Sun T, Xie X, Zhou Y, Du Z. 2016. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by downregulation of MMP2 and inactivation of ERK/MAPK signaling. Cell Death Dis 7:e2123. https://doi.org/10.1038/cddis.2015.407.
  • Zhang Y, Ma M, Liu W, Ding W, Yu H. 2014. Enhanced expression of long noncoding RNA CARLo-5 is associated with the development of gastric cancer. Int J Clin Exp Pathol 7:8471–8479.
  • Cicenas J, Zalyte E, Rimkus A, Dapkus D, Noreika R, Urbonavicius S. 2017. JNK, p38, ERK, and SGK1 inhibitors in cancer. Cancers (Basel) 10:1. https://doi.org/10.3390/cancers10010001.
  • Li JH, Liu S, Zhou H, Qu LH, Yang JH. 2014. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92–D97. https://doi.org/10.1093/nar/gkt1248.
  • Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. 2014. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics 15:293. https://doi.org/10.1186/1471-2105-15-293.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.