46
Views
23
CrossRef citations to date
0
Altmetric
Article

Protein Kinase C-Mediated Phosphorylation of BCL11B at Serine 2 Negatively Regulates Its Interaction with NuRD Complexes during CD4+ T-Cell Activation

, , , , , , & show all
Pages 1881-1898 | Received 25 Jan 2016, Accepted 03 May 2016, Published online: 17 Mar 2023

REFERENCES

  • Avram D, Fields A, Pretty On Top K, Nevrivy DJ, Ishmael JE, Leid M. 2000. Isolation of a novel family of C(2)H(2) zinc finger proteins implicated in transcriptional repression mediated by chicken ovalbumin upstream promoter transcription factor (COUP-TF) orphan nuclear receptors. J Biol Chem 275:10315–10322. http://dx.doi.org/10.1074/jbc.275.14.10315.
  • Avram D, Fields A, Senawong T, Topark-Ngarm A, Leid M. 2002. COUP-TF (chicken ovalbumin upstream promoter transcription factor)-interacting protein 1 (CTIP1) is a sequence-specific DNA binding protein. Biochem J 368:555–563. http://dx.doi.org/10.1042/bj20020496.
  • Wakabayashi Y, Inoue J, Takahashi Y, Matsuki A, Kosugi-Okano H, Shinbo T, Mishima Y, Niwa O, Kominami R. 2003. Homozygous deletions and point mutations of the Rit1/Bcl11b gene in gamma-ray induced mouse thymic lymphomas. Biochem Biophys Res Commun 301:598–603. http://dx.doi.org/10.1016/S0006-291X(02)03069-3.
  • Avram D, Califano D. 2014. The multifaceted roles of Bcl11b in thymic and peripheral T cells: impact on immune diseases. J Immunol 193:2059–2065. http://dx.doi.org/10.4049/jimmunol.1400930.
  • Wakabayashi Y, Watanabe H, Inoue J, Takeda N, Sakata J, Mishima Y, Hitomi J, Yamamoto T, Utsuyama M, Niwa O, Aizawa S, Kominami R. 2003. Bcl11b is required for differentiation and survival of alphabeta T lymphocytes. Nat Immunol 4:533–539. http://dx.doi.org/10.1038/ni927.
  • Albu DI, Feng D, Bhattacharya D, Jenkins NA, Copeland NG, Liu P, Avram D. 2007. BCL11B is required for positive selection and survival of double-positive thymocytes. J Exp Med 204:3003–3015. http://dx.doi.org/10.1084/jem.20070863.
  • Li L, Leid M, Rothenberg EV. 2010. An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b. Science 329:89–93. http://dx.doi.org/10.1126/science.1188989.
  • Li P, Burke S, Wang J, Chen X, Ortiz M, Lee SC, Lu D, Campos L, Goulding D, Ng BL, Dougan G, Huntly B, Gottgens B, Jenkins NA, Copeland NG, Colucci F, Liu P. 2010. Reprogramming of T cells to natural killer-like cells upon Bcl11b deletion. Science 329:85–89. http://dx.doi.org/10.1126/science.1188063.
  • Kastner P, Chan S, Vogel WK, Zhang LJ, Topark-Ngarm A, Golonzhka O, Jost B, Le Gras S, Gross MK, Leid M. 2010. Bcl11b represses a mature T-cell gene expression program in immature CD4(+)CD8(+) thymocytes. Eur J Immunol 40:2143–2154. http://dx.doi.org/10.1002/eji.200940258.
  • Gutierrez A, Kentsis A, Sanda T, Holmfeldt L, Chen SC, Zhang J, Protopopov A, Chin L, Dahlberg SE, Neuberg DS, Silverman LB, Winter SS, Hunger SP, Sallan SE, Zha S, Alt FW, Downing JR, Mullighan CG, Look AT. 2011. The BCL11B tumor suppressor is mutated across the major molecular subtypes of T-cell acute lymphoblastic leukemia. Blood 118:4169–4173. http://dx.doi.org/10.1182/blood-2010-11-318873.
  • Kominami R. 2012. Role of the transcription factor Bcl11b in development and lymphomagenesis. Proc Jpn Acad Ser B Phys Biol Sci 88:72–87. http://dx.doi.org/10.2183/pjab.88.72.
  • Di Santo JP. 2010. Immunology. A guardian of T cell fate. Science 329:44–45. http://dx.doi.org/10.1126/science.1191664.
  • Liu P, Keller JR, Ortiz M, Tessarollo L, Rachel RA, Nakamura T, Jenkins NA, Copeland NG. 2003. Bcl11a is essential for normal lymphoid development. Nat Immunol 4:525–532. http://dx.doi.org/10.1038/ni925.
  • Sankaran VG, Xu J, Ragoczy T, Ippolito GC, Walkley CR, Maika SD, Fujiwara Y, Ito M, Groudine M, Bender MA, Tucker PW, Orkin SH. 2009. Developmental and species-divergent globin switching are driven by BCL11A. Nature 460:1093–1097. http://dx.doi.org/10.1038/nature08243.
  • Bauer DE, Kamran SC, Orkin SH. 2012. Reawakening fetal hemoglobin: prospects for new therapies for the beta-globin disorders. Blood 120:2945–2953. http://dx.doi.org/10.1182/blood-2012-06-292078.
  • Le Douce V, Cherrier T, Riclet R, Rohr O, Schwartz C. 2014. The many lives of CTIP2: from AIDS to cancer and cardiac hypertrophy. J Cell Physiol 229:533–537. http://dx.doi.org/10.1002/jcp.24490.
  • Marban C, Suzanne S, Dequiedt F, de Walque S, Redel L, Van Lint C, Aunis D, Rohr O. 2007. Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. EMBO J 26:412–423. http://dx.doi.org/10.1038/sj.emboj.7601516.
  • Cismasiu VB, Adamo K, Gecewicz J, Duque J, Lin Q, Avram D. 2005. BCL11B functionally associates with the NuRD complex in T lymphocytes to repress targeted promoter. Oncogene 24:6753–6764. http://dx.doi.org/10.1038/sj.onc.1208904.
  • Cismasiu VB, Ghanta S, Duque J, Albu DI, Chen HM, Kasturi R, Avram D. 2006. BCL11B participates in the activation of IL2 gene expression in CD4+ T lymphocytes. Blood 108:2695–2702. http://dx.doi.org/10.1182/blood-2006-05-021790.
  • Cismasiu VB, Duque J, Paskaleva E, Califano D, Ghanta S, Young HA, Avram D. 2009. BCL11B enhances TCR/CD28-triggered NF-kappaB activation through up-regulation of Cot kinase gene expression in T-lymphocytes. Biochem J 417:457–466. http://dx.doi.org/10.1042/BJ20080925.
  • Zhang LJ, Vogel WK, Liu X, Topark-Ngarm A, Arbogast BL, Maier CS, Filtz TM, Leid M. 2012. Coordinated regulation of transcription factor Bcl11b activity in thymocytes by the mitogen-activated protein kinase (MAPK) pathways and protein sumoylation. J Biol Chem 287:26971–26988. http://dx.doi.org/10.1074/jbc.M112.344176.
  • Filtz TM, Vogel WK, Leid M. 2014. Regulation of transcription factor activity by interconnected post-translational modifications. Trends Pharmacol Sci 35:76–85. http://dx.doi.org/10.1016/j.tips.2013.11.005.
  • Azzaoui I, Yahia SA, Chang Y, Vorng H, Morales O, Fan Y, Delhem N, Ple C, Tonnel AB, Wallaert B, Tsicopoulos A. 2011. CCL18 differentiates dendritic cells in tolerogenic cells able to prime regulatory T cells in healthy subjects. Blood 118:3549–3558. http://dx.doi.org/10.1182/blood-2011-02-338780.
  • Cherrier T, Le Douce V, Eilebrecht S, Riclet R, Marban C, Dequiedt F, Goumon Y, Paillart JC, Mericskay M, Parlakian A, Bausero P, Abbas W, Herbein G, Kurdistani SK, Grana X, Van Driessche B, Schwartz C, Candolfi E, Benecke AG, Van Lint C, Rohr O. 2013. CTIP2 is a negative regulator of P-TEFb. Proc Natl Acad Sci U S A 110:12655–12660. http://dx.doi.org/10.1073/pnas.1220136110.
  • Stankovic-Valentin N, Deltour S, Seeler J, Pinte S, Vergoten G, Guerardel C, Dejean A, Leprince D. 2007. An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity. Mol Cell Biol 27:2661–2675. http://dx.doi.org/10.1128/MCB.01098-06.
  • Lauberth SM, Rauchman M. 2006. A conserved 12-amino acid motif in Sall1 recruits the nucleosome remodeling and deacetylase corepressor complex. J Biol Chem 281:23922–23931. http://dx.doi.org/10.1074/jbc.M513461200.
  • Lauberth SM, Bilyeu AC, Firulli BA, Kroll KL, Rauchman M. 2007. A phosphomimetic mutation in the Sall1 repression motif disrupts recruitment of the nucleosome remodeling and deacetylase complex and repression of Gbx2. J Biol Chem 282:34858–34868. http://dx.doi.org/10.1074/jbc.M703702200.
  • Chen L, Meng Q, Jing X, Xu P, Luo D. 2011. A role for protein kinase C in the regulation of membrane fluidity and Ca(2)(+) flux at the endoplasmic reticulum and plasma membranes of HEK293 and Jurkat cells. Cell Signal 23:497–505. http://dx.doi.org/10.1016/j.cellsig.2010.11.005.
  • Prickett TD, Brautigan DL. 2006. The alpha4 regulatory subunit exerts opposing allosteric effects on protein phosphatases PP6 and PP2A. J Biol Chem 281:30503–30511. http://dx.doi.org/10.1074/jbc.M601054200.
  • Muller S, Matunis MJ, Dejean A. 1998. Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J 17:61–70. http://dx.doi.org/10.1093/emboj/17.1.61.
  • Li W, Jiang Z, Li T, Wei X, Zheng Y, Wu D, Yang Y, Chen S, Xu B, Zhong M, Jiang J, Hu Y, Su H, Zhang M, Huang X, Geng S, Weng J, Du X, Liu P, Li Y, Liu H, Yao Y, Li P. 2015. Genome-wide analyses identify KLF4 as an important negative regulator in T-cell acute lymphoblastic leukemia through directly inhibiting T-cell associated genes. Mol Cancer 14:26. http://dx.doi.org/10.1186/s12943-014-0285-x.
  • Kim YS, Nagy K, Keyser S, Schneekloth SJ, Jr. 2013. An electrophoretic mobility shift assay identifies a mechanistically unique inhibitor of protein sumoylation. Chem Biol 20:604–613. http://dx.doi.org/10.1016/j.chembiol.2013.04.001.
  • Fukuda I, Ito A, Hirai G, Nishimura S, Kawasaki H, Saitoh H, Kimura K, Sodeoka M, Yoshida M. 2009. Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate. Chem Biol 16:133–140. http://dx.doi.org/10.1016/j.chembiol.2009.01.009.
  • Hoellein A, Fallahi M, Schoeffmann S, Steidle S, Schaub FX, Rudelius M, Laitinen I, Nilsson L, Goga A, Peschel C, Nilsson JA, Cleveland JL, Keller U. 2014. Myc-induced SUMOylation is a therapeutic vulnerability for B-cell lymphoma. Blood 124:2081–2090. http://dx.doi.org/10.1182/blood-2014-06-584524.
  • Hemshekhar M, Sebastin Santhosh M, Kemparaju K, Girish KS. 2012. Emerging roles of anacardic acid and its derivatives: a pharmacological overview. Basic Clin Pharmacol Toxicol 110:122–132. http://dx.doi.org/10.1111/j.1742-7843.2011.00833.x.
  • Boulay G, Dubuissez M, Van Rechem C, Forget A, Helin K, Ayrault O, Leprince D. 2012. Hypermethylated in cancer 1 (HIC1) recruits polycomb repressive complex 2 (PRC2) to a subset of its target genes through interaction with human polycomb-like (hPCL) proteins. J Biol Chem 287:10509–10524. http://dx.doi.org/10.1074/jbc.M111.320234.
  • Wu CS, Ouyang J, Mori E, Nguyen HD, Marechal A, Hallet A, Chen DJ, Zou L. 2014. SUMOylation of ATRIP potentiates DNA damage signaling by boosting multiple protein interactions in the ATR pathway. Genes Dev 28:1472–1484. http://dx.doi.org/10.1101/gad.238535.114.
  • Van Dessel N, Beke L, Gornemann J, Minnebo N, Beullens M, Tanuma N, Shima H, Van Eynde A, Bollen M. 2010. The phosphatase interactor NIPP1 regulates the occupancy of the histone methyltransferase EZH2 at Polycomb targets. Nucleic Acids Res 38:7500–7512. http://dx.doi.org/10.1093/nar/gkq643.
  • Boulay G, Rosnoblet C, Guerardel C, Angrand PO, Leprince D. 2011. Functional characterization of human Polycomb-like 3 isoforms identifies them as components of distinct EZH2 protein complexes. Biochem J 434:333–342. http://dx.doi.org/10.1042/BJ20100944.
  • Dehennaut V, Loison I, Dubuissez M, Nassour J, Abbadie C, Leprince D. 2013. DNA double-strand breaks lead to activation of hypermethylated in cancer 1 (HIC1) by SUMOylation to regulate DNA repair. J Biol Chem 288:10254–10264. http://dx.doi.org/10.1074/jbc.M112.421610.
  • Dege C, Hagman J. 2014. Mi-2/NuRD chromatin remodeling complexes regulate B and T-lymphocyte development and function. Immunol Rev 261:126–140. http://dx.doi.org/10.1111/imr.12209.
  • Manavathi B, Singh K, Kumar R. 2007. MTA family of coregulators in nuclear receptor biology and pathology. Nucl Recept Signal 5:e010. http://dx.doi.org/10.1621/nrs.05010.
  • Satterwhite E, Sonoki T, Willis TG, Harder L, Nowak R, Arriola EL, Liu H, Price HP, Gesk S, Steinemann D, Schlegelberger B, Oscier DG, Siebert R, Tucker PW, Dyer MJ. 2001. The BCL11 gene family: involvement of BCL11A in lymphoid malignancies. Blood 98:3413–3420. http://dx.doi.org/10.1182/blood.V98.12.3413.
  • Durum SK. 2003. Bcl11: sibling rivalry in lymphoid development. Nat Immunol 4:512–514. http://dx.doi.org/10.1038/ni0603-512.
  • Hong W, Nakazawa M, Chen YY, Kori R, Vakoc CR, Rakowski C, Blobel GA. 2005. FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1. EMBO J 24:2367–2378. http://dx.doi.org/10.1038/sj.emboj.7600703.
  • Alqarni SS, Murthy A, Zhang W, Przewloka MR, Silva AP, Watson AA, Lejon S, Pei XY, Smits AH, Kloet SL, Wang H, Shepherd NE, Stokes PH, Blobel GA, Vermeulen M, Glover DM, Mackay JP, Laue ED. 2014. Insight into the architecture of the NuRD complex: structure of the RbAp48-MTA1 subcomplex. J Biol Chem 289:21844–21855. http://dx.doi.org/10.1074/jbc.M114.558940.
  • Kennelly PJ, Krebs EG. 1991. Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J Biol Chem 266:15555–15558.
  • Kong KF, Altman A. 2013. In and out of the bull's eye: protein kinase Cs in the immunological synapse. Trends Immunol 34:234–242. http://dx.doi.org/10.1016/j.it.2013.01.002.
  • Lejon S, Thong SY, Murthy A, AlQarni S, Murzina NV, Blobel GA, Laue ED, Mackay JP. 2011. Insights into association of the NuRD complex with FOG-1 from the crystal structure of an RbAp48.FOG-1 complex. J Biol Chem 286:1196–1203. http://dx.doi.org/10.1074/jbc.M110.195842.
  • Puente LG, Stone JC, Ostergaard HL. 2000. Evidence for protein kinase C-dependent and -independent activation of mitogen-activated protein kinase in T cells: potential role of additional diacylglycerol binding protein. J Immunol 165:6865–6871. http://dx.doi.org/10.4049/jimmunol.165.12.6865.
  • Huang X, Shen Q, Chen S, Chen S, Yang L, Weng J, Du X, Grabarczyk P, Przybylski GK, Schmidt CA, Li Y. 2011. Gene expression profiles in BCL11B-siRNA treated malignant T cells. J Hematol Oncol 4:23. http://dx.doi.org/10.1186/1756-8722-4-23.
  • Vogel WK, Gafken PR, Leid M, Filtz TM. 2014. Kinetic analysis of BCL11B multisite phosphorylation-dephosphorylation and coupled sumoylation in primary thymocytes by multiple reaction monitoring mass spectroscopy. J Proteome Res 13:5860–5868. http://dx.doi.org/10.1021/pr5007697.
  • Li X, Wang W, Wang J, Malovannaya A, Xi Y, Li W, Guerra R, Hawke DH, Qin J, Chen J. 2015. Proteomic analyses reveal distinct chromatin-associated and soluble transcription factor complexes. Mol Syst Biol 11:775. http://dx.doi.org/10.15252/msb.20145504.
  • Ji Z, Sharrocks AD. 2015. Changing partners: transcription factors form different complexes on and off chromatin. Mol Syst Biol 11:782. http://dx.doi.org/10.15252/msb.20145936.
  • Nair SS, Li DQ, Kumar R. 2013. A core chromatin remodeling factor instructs global chromatin signaling through multivalent reading of nucleosome codes. Mol Cell 49:704–718. http://dx.doi.org/10.1016/j.molcel.2012.12.016.
  • Lin AC, Roche AE, Wilk J, Svensson EC. 2004. The N termini of Friend of GATA (FOG) proteins define a novel transcriptional repression motif and a superfamily of transcriptional repressors. J Biol Chem 279:55017–55023. http://dx.doi.org/10.1074/jbc.M411240200.
  • Gao Z, Huang Z, Olivey HE, Gurbuxani S, Crispino JD, Svensson EC. 2010. FOG-1-mediated recruitment of NuRD is required for cell lineage re-enforcement during haematopoiesis. EMBO J 29:457–468. http://dx.doi.org/10.1038/emboj.2009.368.
  • Miccio A, Wang Y, Hong W, Gregory GD, Wang H, Yu X, Choi JK, Shelat S, Tong W, Poncz M, Blobel GA. 2010. NuRD mediates activating and repressive functions of GATA-1 and FOG-1 during blood development. EMBO J 29:442–456. http://dx.doi.org/10.1038/emboj.2009.336.
  • Van Rechem C, Boulay G, Pinte S, Stankovic-Valentin N, Guerardel C, Leprince D. 2010. Differential regulation of HIC1 target genes by CtBP and NuRD, via an acetylation/SUMOylation switch, in quiescent versus proliferating cells. Mol Cell Biol 30:4045–4059. http://dx.doi.org/10.1128/MCB.00582-09.
  • Fujita N, Jaye DL, Geigerman C, Akyildiz A, Mooney MR, Boss JM, Wade PA. 2004. MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation. Cell 119:75–86. http://dx.doi.org/10.1016/j.cell.2004.09.014.
  • Huang C, Gonzalez DG, Cote CM, Jiang Y, Hatzi K, Teater M, Dai K, Hla T, Haberman AM, Melnick A. 2014. The BCL6 RD2 domain governs commitment of activated B cells to form germinal centers. Cell Rep 8:1497–1508. http://dx.doi.org/10.1016/j.celrep.2014.07.059.
  • Parekh S, Polo JM, Shaknovich R, Juszczynski P, Lev P, Ranuncolo SM, Yin Y, Klein U, Cattoretti G, Dalla Favera R, Shipp MA, Melnick A. 2007. BCL6 programs lymphoma cells for survival and differentiation through distinct biochemical mechanisms. Blood 110:2067–2074. http://dx.doi.org/10.1182/blood-2007-01-069575.
  • Nance JP, Belanger S, Johnston RJ, Hu JK, Takemori T, Crotty S. 2015. Bcl6 middle domain repressor function is required for T follicular helper cell differentiation and utilizes the corepressor MTA3. Proc Natl Acad Sci U S A 112:13324–13329. http://dx.doi.org/10.1073/pnas.1507312112.
  • Huang X, Chen S, Shen Q, Chen S, Yang L, Grabarczyk P, Przybylski GK, Schmidt CA, Li Y. 2011. Down regulation of BCL11B expression inhibits proliferation and induces apoptosis in malignant T cells by BCL11B-935-siRNA. Hematology 16:236–242. http://dx.doi.org/10.1179/102453311X13025568941961.
  • Conomos D, Reddel RR, Pickett HA. 2014. NuRD-ZNF827 recruitment to telomeres creates a molecular scaffold for homologous recombination. Nat Struct Mol Biol 21:760–770. http://dx.doi.org/10.1038/nsmb.2877.
  • Cismasiu VB, Paskaleva E, Suman Daya S, Canki M, Duus K, Avram D. 2008. BCL11B is a general transcriptional repressor of the HIV-1 long terminal repeat in T lymphocytes through recruitment of the NuRD complex. Virology 380:173–181. http://dx.doi.org/10.1016/j.virol.2008.07.035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.