38
Views
29
CrossRef citations to date
0
Altmetric
Article

Suv39h1 Mediates AP-2α-Dependent Inhibition of C/EBPα Expression during Adipogenesis

, , , , , , , & show all
Pages 2330-2338 | Received 14 Jan 2014, Accepted 05 Apr 2014, Published online: 20 Mar 2023

REFERENCES

  • Haslam DW, James WP. 2005. Obesity. Lancet 366:1197–1209. http://dx.doi.org/10.1016/S0140-6736(05)67483-1.
  • Tang QQ, Lane MD. 1999. Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev. 13:2231–2241. http://dx.doi.org/10.1101/gad.13.17.2231.
  • Tang QQ, Zhang JW, Lane MD. 2004. Sequential gene promoter interactions by C/EBP beta, C/EBP alpha, and PPAR gamma during adipogenesis. Biochem. Biophys. Res. Commun. 318:213–218. http://dx.doi.org/10.1016/j.bbrc.2004.04.017.
  • Tang QQ, Otto TC, Lane MD. 2003. CCAAT/enhancer-binding protein beta is required for mitotic clonal expansion during adipogenesis. Proc. Natl. Acad. Sci. U. S. A. 100:850–855. http://dx.doi.org/10.1073/pnas.0337434100.
  • Hwang C, Mandrup S, Macdougald OA, Geiman DE, Lane MD. 1996. Transcriptional activation of the mouse obese (ob) gene by CCAAT/enhancer binding protein alpha. Proc. Natl. Acad. Sci. U. S. A. 93:873–877. http://dx.doi.org/10.1073/pnas.93.2.873.
  • Cheneval D, Christy RJ, Geiman D, Cornelius P, Lane MD. 1991. Cell-free transcription directed by the 422 adipose P2 gene promoter: activation by the CCAAT/enhancer binding protein. Proc. Natl. Acad. Sci. U. S. A. 88:8465–8469. http://dx.doi.org/10.1073/pnas.88.19.8465.
  • Birkenmeier EH, Gwynn B, Howard S, Jerry J, Gordon JI, Landschulz WH, McKnight SL. 1989. Tissue-specific expression, developmental regulation, and genetic mapping of the gene encoding CCAAT/enhancer binding protein. Genes Dev. 3:1146–1156. http://dx.doi.org/10.1101/gad.3.8.1146.
  • Timchenko NA. 2009. Aging and liver regeneration. Trends Endocrinol. Metab. 20:171–176. http://dx.doi.org/10.1016/j.tem.2009.01.005.
  • Porse BT, Pedersen TÅ, Xu XF, Lindberg B, Wewer UM, Friis-Hansen L, Nerlov C. 2001. E2F repression by C/EBP alpha is required for adipogenesis and granulopoiesis in vivo. Cell 107:247–258. http://dx.doi.org/10.1016/S0092-8674(01)00516-5.
  • Wang ND, Finegold MJ, Bradley A, Ou CN, Abdelsyed SV, Wilde MD, Taylor LR, Wilson DR, Darlington GJ. 1995. Impaired energy homeostasis in C/EBP alpha knockout mice. Science 269:1108–1112. http://dx.doi.org/10.1126/science.7652557.
  • Halmos B, Huettner CS, Kocher O, Ferenczi K, Karp DD, Tenen DG. 2002. Down-regulation and antiproliferative role of C/EBP alpha in lung cancer. Cancer Res. 62:528–534.
  • Xu L, Hui L, Wang S, Gong J, Jin Y, Wang Y, Ji Y, Wu X, Han Z, Hu G. 2001. Expression profiling suggested a regulatory role of liver-enriched transcription factors in human hepatocellular carcinoma. Cancer Res. 61:3176–3181.
  • Gery S, Tanosaki S, Bose S, Bose N, Vadgama J, Koeffler HP. 2005. Down-regulation and growth inhibitory role of C/EBP alpha in breast cancer. Clin. Cancer Res. 11:3184–3190. http://dx.doi.org/10.1158/1078-0432.CCR-04-2625.
  • Shim M, Powers KL, Ewing SJ, Zhu S, Smart RC. 2005. Diminished expression of C/EBP alpha in skin carcinomas is linked to oncogenic ras and reexpression of C/EBP alpha in carcinoma cells inhibits proliferation. Cancer Res. 65:861–867.
  • Paz-Priel I, Friedman A. 2011. C/EBP alpha dysregulation in AML and ALL. Crit. Rev. Oncog. 16:93–102. http://dx.doi.org/10.1615/CritRevOncog.v16.i1-2.90.
  • Bennett KL, Hackanson B, Smith LT, Morrison CD, Lang JC, Schuller DE, Weber F, Eng C, Plass C. 2007. Tumor suppressor activity of CCAAT/enhancer binding protein alpha is epigenetically down-regulated in head and neck squamous cell carcinoma. Cancer Res. 67:4657–4664. http://dx.doi.org/10.1158/0008-5472.CAN-06-4793.
  • O'Brien EK, d'Alençon C, Bonde G, Li W, Schoenebeck J, Allende ML, Gelb BD, Yelon D, Eisen JS, Cornell RA. 2004. Transcription factor AP-2 alpha is necessary for development of embryonic melanophores, autonomic neurons and pharyngeal skeleton in zebrafish. Dev. Biol. 265:246–261. http://dx.doi.org/10.1016/j.ydbio.2003.09.029.
  • Schorle H, Meier P, Buchert M, Jaenisch R, Mitchell PJ. 1996. Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature 381:235–238. http://dx.doi.org/10.1038/381235a0.
  • Liu H, Tan BC, Tseng KH, Chuang CP, Yeh CW, Chen KD, Lee SC, Yung BY. 2007. Nucleophosmin acts as a novel AP2 alpha-binding transcriptional corepressor during cell differentiation. EMBO Rep. 8:394–400. http://dx.doi.org/10.1038/sj.embor.7400909.
  • Holt EH, Lane MD. 2001. Downregulation of repressive CUP/AP-2 isoforms during adipocyte differentiation. Biochem. Biophys. Res. Commun. 288:752–758. http://dx.doi.org/10.1006/bbrc.2001.5846.
  • Tang QQ, Otto TC, Lane MD. 2003. Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc. Natl. Acad. Sci. U. S. A. 100:44–49. http://dx.doi.org/10.1073/pnas.0137044100.
  • Bennett KL, Romigh T, Khelifa A, Teresi RE, Tada Y, Eng Plass CC. 2009. Activator protein 2 alpha (AP2α) suppresses 42kDa C/CAAT enhancer binding protein alpha (p42/C/EBP α) in head and neck squamous cell carcinoma (HNSCC). Int. J. Cancer 124:1285–1292. http://dx.doi.org/10.1002/ijc.24087.
  • Lehnertz B, Ueda Y, Derijck A, Braunschweig U, Perez-Burgos L, Kubicek S, Chen T, Li E, Jenuwein T, Peters A. 2003. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13:1192–1200. http://dx.doi.org/10.1016/S0960-9822(03)00432-9.
  • Severson PL, Tokar EJ, Vrba L, Waalkes MP, Futscher BW. 2013. Coordinate H3K9 and DNA methylation silencing of ZNFs in toxicant-induced malignant transformation. Epigenetics 8:1080–1088. http://dx.doi.org/10.4161/epi.25926.
  • Rothbart SB, Krajewski K, Nady N, Tempel W, Xue S, Badeaux AI, Barsyte-Lovejoy D, Martinez JY, Bedford MT, Fuchs SM, Arrowsmith CH, Strahl BD. 2012. Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat. Struct. Mol. Biol. 19:1155–1160. http://dx.doi.org/10.1038/nsmb.2391.
  • Cedar H, Bergman Y. 2009. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10:295–304. http://dx.doi.org/10.1038/nrg2540.
  • Ge K. 2012. Epigenetic regulation of adipogenesis by histone methylation. Biochim. Biophys. Acta 1819:727–732. http://dx.doi.org/10.1016/j.bbagrm.2011.12.008.
  • Takada I, Mihara M, Suzawa M, Ohtake F, Kobayashi S, Igarashi M, Youn MY, Takeyama K, Nakamura T, Mezaki Y, Takezawa S, Yogiashi Y, Kitagawa H, Yamada G, Takada S, Minami Y, Shibuya H, Matsumoto K, KatoS. 2007. A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-gamma transactivation. Nat. Cell Biol. 9:1273–1285. http://dx.doi.org/10.1038/ncb1647.
  • Wang L, Xu S, Lee J, Baldridge A, Grullon S, Peng W, Ge K. 2013. Histone H3K9 methyltransferase G9a represses PPARγ expression and adipogenesis. EMBO J. 32:45–59. http://dx.doi.org/10.1038/emboj.2012.306.
  • Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting C, Allis D, Jenuwein T. 2000. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–599. http://dx.doi.org/10.1038/35020506.
  • Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T. 2001. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410:116–120. http://dx.doi.org/10.1038/35065132.
  • Allan RS, Zueva E, Cammas F, Schreiber HA, Masson V, Belz GT, Roche D, Maison C, Quivy J, Almouzni G, Amigorena S. 2012. An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature 487:249–253. http://dx.doi.org/10.1038/nature11173.
  • Mal AK. 2006. Histone methyltransferase Suv39h1 represses MyoD-stimulated myogenic differentiation. EMBO J. 25:3323–3334. http://dx.doi.org/10.1038/sj.emboj.7601229.
  • Ait-Si-Ali S, Guasconi V, Fritsch L, Yahi H, Sekhri R, Naguibneva I, Robin P, Cabon F, Polesskaya A, Harel-Bellan A. 2004. A Suv39h-dependent mechanism for silencing S-phase genes in differentiating but not in cycling cells. EMBO J. 23:605–615. http://dx.doi.org/10.1038/sj.emboj.7600074.
  • Vandel L, Nicolas E, Vaute O, Ferreira R, Ait-Si-Ali S, Trouche SD. 2001. Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase. Mol. Cell. Biol. 21:6484–6494. http://dx.doi.org/10.1128/MCB.21.19.6484-6494.2001.
  • Villeneuve LM, Kato M, Reddy MA, Wang M, Lanting L, Natarajan R. 2010. Enhanced levels of microRNA-125b in vascular smooth muscle cells of diabetic db/db mice lead to increased inflammatory gene expression by targeting the histone methyltransferase Suv39h1. Diabetes 59:2904–2915. http://dx.doi.org/10.2337/db10-0208.
  • Villeneuve LM, Reddy MA, Lanting LL, Wang M, Meng L, Natarajan R. 2008. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proc. Natl. Acad. Sci. U. S. A. 105:9047–9052. http://dx.doi.org/10.1073/pnas.0803623105.
  • Jiang MS, Tang QQ, Mclenithan J, Geiman D, Shillinglaw W, Henzel WJ, Lane MD. 1998. Derepression of the C/EBP alpha gene during adipogenesis: identification of AP-2 alpha as a repressor. Proc. Natl. Acad. Sci. U. S. A. 95:3467–3471. http://dx.doi.org/10.1073/pnas.95.7.3467.
  • Loyola A, Tagami H, Bonaldi T, Roche D, Quivy JP, Imhof A, Nakatani Y, Dent SYR, Almouzni SYG. 2009. The HP1α-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep. 10:769–775. http://dx.doi.org/10.1038/embor.2009.90.
  • Coward WR, Watts K, Feghali-Bostwick CA, Jenkins G, Pang L. 2010. Repression of IP-10 by interactions between histone deacetylation and hypermethylation in idiopathic pulmonary fibrosis. Mol. Cell. Biol. 30:2874–2886. http://dx.doi.org/10.1128/MCB.01527-09.
  • MacDougald OA, Lane MD. 1995. Transcriptional regulation of gene expression during adipocyte differentiation. Annu. Rev. Biochem. 64:345–373. http://dx.doi.org/10.1146/annurev.bi.64.070195.002021.
  • Rosen ED, Spiegelman BM. 2000. Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Biol. 16:145–171. http://dx.doi.org/10.1146/annurev.cellbio.16.1.145.
  • Siersbæk R, Nielsen R, Mandrup S. 2012. Transcriptional networks and chromatin remodeling controlling adipogenesis. Trends Endocrinol. Metab. 23:56–64. http://dx.doi.org/10.1016/j.tem.2011.10.001.
  • Linhart HG, Ishimura-Oka K, DeMayo F, Kibe T, Repka D, Poindexter B, Bick RJ, Darlington GJ. 2001. C/EBP alpha is required for differentiation of white, but not brown, adipose tissue. Proc. Natl. Acad. Sci. U. S. A. 98:12532–12537. http://dx.doi.org/10.1073/pnas.211416898.
  • Freytag SO, Paielli DL, Gilbert JD. 1994. Ectopic expression of the CCAAT/enhancer-binding protein alpha promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes Dev. 8:1654–1663. http://dx.doi.org/10.1101/gad.8.14.1654.
  • Musri MM, Carmona MC, Hanzu FA, Kaliman P, Gomis R, Párrizas M. 2010. Histone demethylase LSD1 regulates adipogenesis. J. Biol. Chem. 285:30034–30041. http://dx.doi.org/10.1074/jbc.M110.151209.
  • Teperino R, Schoonjans K, Auwerx J. 2010. Histone methyl transferases and demethylases: can they link metabolism and transcription? Cell. Metab. 12:321–327. http://dx.doi.org/10.1016/j.cmet.2010.09.004.
  • Guo L, Li X, Huang JX, Huang HY, Zhang YY, Qian SW, Zhu H, Zhang YD, Liu Y, Liu Y, Wang KK, Tang QQ. 2012. Histone demethylase Kdm4b functions as a co-factor of C/EBP beta to promote mitotic clonal expansion during differentiation of 3T3-L1 preadipocytes. Cell Death Differ. 19:1917–1927. http://dx.doi.org/10.1038/cdd.2012.75.
  • Wu Z, Rosen ED, Brun R, Hauser S, Adelmant G, Troy AE, McKeon C, Darlington GJ, Spiegelman BM. 1999. Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell 3:151–158. http://dx.doi.org/10.1016/S1097-2765(00)80306-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.