44
Views
34
CrossRef citations to date
0
Altmetric
Article

Suppression of MicroRNA 200 Family Expression by Oncogenic KRAS Activation Promotes Cell Survival and Epithelial-Mesenchymal Transition in KRAS-Driven Cancer

, , , , , , , , , , , , , , & show all
Pages 2742-2754 | Received 11 Feb 2016, Accepted 13 Aug 2016, Published online: 17 Mar 2023

REFERENCES

  • Malumbres M, Barbacid M. 2003. RAS oncogenes: the first 30 years. Nat Rev Cancer 3:459–465. http://dx.doi.org/10.1038/nrc1097.
  • Karnoub AE, Weinberg RA. 2008. Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9:517–531. http://dx.doi.org/10.1038/nrm2438.
  • Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. 2011. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11:761–774. http://dx.doi.org/10.1038/nrc3106.
  • Samatar AA, Poulikakos PI. 2014. Targeting RAS-ERK signalling in cancer: promises and challenges. Nat Rev Drug Discov 13:928–942. http://dx.doi.org/10.1038/nrd4281.
  • Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ. 2014. Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov 13:828–851. http://dx.doi.org/10.1038/nrd4389.
  • Yuan D, Xia H, Zhang Y, Chen L, Leng W, Chen T, Chen Q, Tang Q, Mo X, Liu M, Bi F. 2014. P-Akt/miR200 signaling regulates epithelial-mesenchymal transition, migration and invasion in circulating gastric tumor cells. Int J Oncol 45:2430–2438. http://dx.doi.org/10.3892/ijo.2014.2644.
  • Stacey DW, Watson T, Kung HF, Curran T. 1987. Microinjection of transforming ras protein induces c-fos expression. Mol Cell Biol 7:523–527. http://dx.doi.org/10.1128/MCB.7.1.523.
  • Westwick JK, Cox AD, Der CJ, Cobb MH, Hibi M, Karin M, Brenner DA. 1994. Oncogenic Ras activates c-Jun via a separate pathway from the activation of extracellular signal-regulated kinases. Proc Natl Acad Sci U S A 91:6030–6034. http://dx.doi.org/10.1073/pnas.91.13.6030.
  • Finco TS, Westwick JK, Norris JL, Beg AA, Der CJ, Baldwin AS, Jr. 1997. Oncogenic Ha-Ras-induced signaling activates NF-kappaB transcriptional activity, which is required for cellular transformation. J Biol Chem 272:24113–24116. http://dx.doi.org/10.1074/jbc.272.39.24113.
  • Shin S, Dimitri CA, Yoon SO, Dowdle W, Blenis J. 2010. ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Mol Cell 38:114–127. http://dx.doi.org/10.1016/j.molcel.2010.02.020.
  • Kent OA, Chivukula RR, Mullendore M, Wentzel EA, Feldmann G, Lee KH, Liu S, Leach SD, Maitra A, Mendell JT. 2010. Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev 24:2754–2759. http://dx.doi.org/10.1101/gad.1950610.
  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. 2001. Identification of novel genes coding for small expressed RNAs. Science 294:853–858. http://dx.doi.org/10.1126/science.1064921.
  • Lee RC, Feinbaum RL, Ambros V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854. http://dx.doi.org/10.1016/0092-8674(93)90529-Y.
  • Lau NC, Lim LP, Weinstein EG, Bartel DP. 2001. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862. http://dx.doi.org/10.1126/science.1065062.
  • Cao H, Jheon A, Li X, Sun Z, Wang J, Florez S, Zhang Z, McManus MT, Klein OD, Amendt BA. 2013. The Pitx2:miR-200c/141:noggin pathway regulates Bmp signaling and ameloblast differentiation. Development 140:3348–3359. http://dx.doi.org/10.1242/dev.089193.
  • Hasuwa H, Ueda J, Ikawa M, Okabe M. 2013. miR-200b and miR-429 function in mouse ovulation and are essential for female fertility. Science 341:71–73. http://dx.doi.org/10.1126/science.1237999.
  • Morante J, Vallejo DM, Desplan C, Dominguez M. 2013. Conserved miR-8/miR-200 defines a glial niche that controls neuroepithelial expansion and neuroblast transition. Dev Cell 27:174–187. http://dx.doi.org/10.1016/j.devcel.2013.09.018.
  • Magenta A, Cencioni C, Fasanaro P, Zaccagnini G, Greco S, Sarra-Ferraris G, Antonini A, Martelli F, Capogrossi MC. 2011. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ 18:1628–1639. http://dx.doi.org/10.1038/cdd.2011.42.
  • Schickel R, Park SM, Murmann AE, Peter ME. 2010. miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1. Mol Cell 38:908–915. http://dx.doi.org/10.1016/j.molcel.2010.05.018.
  • Gibbons DL, Lin W, Creighton CJ, Rizvi ZH, Gregory PA, Goodall GJ, Thilaganathan N, Du L, Zhang Y, Pertsemlidis A, Kurie JM. 2009. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev 23:2140–2151. http://dx.doi.org/10.1101/gad.1820209.
  • Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A, Brunton VG, Morton J, Sansom O, Schuler J, Stemmler MP, Herzberger C, Hopt U, Keck T, Brabletz S, Brabletz T. 2009. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11:1487–1495. http://dx.doi.org/10.1038/ncb1998.
  • Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ. 2008. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68:7846–7854. http://dx.doi.org/10.1158/0008-5472.CAN-08-1942.
  • Bracken CP, Li X, Wright JA, Lawrence DM, Pillman KA, Salmanidis M, Anderson MA, Dredge BK, Gregory PA, Tsykin A, Neilsen C, Thomson DW, Bert AG, Leerberg JM, Yap AS, Jensen KB, Khew-Goodall Y, Goodall GJ. 2014. Genome-wide identification of miR-200 targets reveals a regulatory network controlling cell invasion. EMBO J 33:2040–2056. http://dx.doi.org/10.15252/embj.201488641.
  • Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ. 2008. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601. http://dx.doi.org/10.1038/ncb1722.
  • Park SM, Gaur AB, Lengyel E, Peter ME. 2008. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22:894–907. http://dx.doi.org/10.1101/gad.1640608.
  • Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T. 2008. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9:582–589. http://dx.doi.org/10.1038/embor.2008.74.
  • Ungewiss C, Rizvi ZH, Roybal JD, Peng DH, Gold KA, Shin DH, Creighton CJ, Gibbons DL. 2016. The microRNA-200/Zeb1 axis regulates ECM-dependent beta1-integrin/FAK signaling, cancer cell invasion and metastasis through CRKL. Sci Rep 6:18652. http://dx.doi.org/10.1038/srep18652.
  • Pecot CV, Rupaimoole R, Yang D, Akbani R, Ivan C, Lu C, Wu S, Han HD, Shah MY, Rodriguez-Aguayo C, Bottsford-Miller J, Liu Y, Kim SB, Unruh A, Gonzalez-Villasana V, Huang L, Zand B, Moreno-Smith M, Mangala LS, Taylor M, Dalton HJ, Sehgal V, Wen Y, Kang Y, Baggerly KA, Lee JS, Ram PT, Ravoori MK, Kundra V, Zhang X, Ali-Fehmi R, Gonzalez-Angulo AM, Massion PP, Calin GA, Lopez-Berestein G, Zhang W, Sood AK. 2013. Tumour angiogenesis regulation by the miR-200 family. Nat Commun 4:2427. http://dx.doi.org/10.1038/ncomms3427.
  • Chen L, Gibbons DL, Goswami S, Cortez MA, Ahn YH, Byers LA, Zhang X, Yi X, Dwyer D, Lin W, Diao L, Wang J, Roybal JD, Patel M, Ungewiss C, Peng D, Antonia S, Mediavilla-Varela M, Robertson G, Jones S, Suraokar M, Welsh JW, Erez B, Wistuba II, Chen L, Peng D, Wang S, Ullrich SE, Heymach JV, Kurie JM, Qin FX. 2014. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat Commun 5:5241. http://dx.doi.org/10.1038/ncomms6241.
  • Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA, Celia-Terrassa T, Mercatali L, Khan Z, Goodarzi H, Hua Y, Wei Y, Hu G, Garcia BA, Ragoussis J, Amadori D, Harris AL, Kang Y. 2011. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med 17:1101–1108. http://dx.doi.org/10.1038/nm.2401.
  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. 2002. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99:15524–15529. http://dx.doi.org/10.1073/pnas.242606799.
  • Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, Dickinson S, Stampfer MR, Futscher BW. 2010. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One 5:e8697. http://dx.doi.org/10.1371/journal.pone.0008697.
  • Lim YY, Wright JA, Attema JL, Gregory PA, Bert AG, Smith E, Thomas D, Lopez AF, Drew PA, Khew-Goodall Y, Goodall GJ. 2013. Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state. J Cell Sci 126:2256–2266. http://dx.doi.org/10.1242/jcs.122275.
  • Attema JL, Bert AG, Lim YY, Kolesnikoff N, Lawrence DM, Pillman KA, Smith E, Drew PA, Khew-Goodall Y, Shannon F, Goodall GJ. 2013. Identification of an enhancer that increases miR-200b∼200a∼429 gene expression in breast cancer cells. PLoS One 8:e75517. http://dx.doi.org/10.1371/journal.pone.0075517.
  • Liu Y, Sanchez-Tillo E, Lu X, Huang L, Clem B, Telang S, Jenson AB, Cuatrecasas M, Chesney J, Postigo A, Dean DC. 2014. The ZEB1 transcription factor acts in a negative feedback loop with miR200 downstream of Ras and Rb1 to regulate Bmi1 expression. J Biol Chem 289:4116–4125. http://dx.doi.org/10.1074/jbc.M113.533505.
  • DuPage M, Dooley AL, Jacks T. 2009. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc 4:1064–1072. http://dx.doi.org/10.1038/nprot.2009.95.
  • Debnath J, Muthuswamy SK, Brugge JS. 2003. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30:256–268. http://dx.doi.org/10.1016/S1046-2023(03)00032-X.
  • Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru CD, Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M, Croce CM. 2004. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci U S A 101:9740–9744. http://dx.doi.org/10.1073/pnas.0403293101.
  • Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA, Jacks T. 2008. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A 105:3903–3908. http://dx.doi.org/10.1073/pnas.0712321105.
  • Fenton RG, Hixon JA, Wright PW, Brooks AD, Sayers TJ. 1998. Inhibition of Fas (CD95) expression and Fas-mediated apoptosis by oncogenic Ras. Cancer Res 58:3391–3400.
  • Guerrero S, Casanova I, Farre L, Mazo A, Capella G, Mangues R. 2000. K-ras codon 12 mutation induces higher level of resistance to apoptosis and predisposition to anchorage-independent growth than codon 13 mutation or proto-oncogene overexpression. Cancer Res 60:6750–6756.
  • Khwaja A, Rodriguez-Viciana P, Wennstrom S, Warne PH, Downward J. 1997. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J 16:2783–2793. http://dx.doi.org/10.1093/emboj/16.10.2783.
  • Peli J, Schroter M, Rudaz C, Hahne M, Meyer C, Reichmann E, Tschopp J. 1999. Oncogenic Ras inhibits Fas ligand-mediated apoptosis by downregulating the expression of Fas. EMBO J 18:1824–1831. http://dx.doi.org/10.1093/emboj/18.7.1824.
  • Kinoshita T, Yokota T, Arai K, Miyajima A. 1995. Regulation of Bcl-2 expression by oncogenic Ras protein in hematopoietic cells. Oncogene 10:2207–2212.
  • Bates RC, Edwards NS, Yates JD. 2000. Spheroids and cell survival. Crit Rev Oncol Hematol 36:61–74. http://dx.doi.org/10.1016/S1040-8428(00)00077-9.
  • O'Brien LE, Zegers MM, Mostov KE. 2002. Opinion. Building epithelial architecture: insights from three-dimensional culture models. Nat Rev Mol Cell Biol 3:531–537.
  • Jackson EL, Olive KP, Tuveson DA, Bronson R, Crowley D, Brown M, Jacks T. 2005. The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res 65:10280–10288. http://dx.doi.org/10.1158/0008-5472.CAN-05-2193.
  • Mulholland DJ, Kobayashi N, Ruscetti M, Zhi A, Tran LM, Huang J, Gleave M, Wu H. 2012. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res 72:1878–1889. http://dx.doi.org/10.1158/0008-5472.CAN-11-3132.
  • Wang Z, Ali S, Banerjee S, Bao B, Li Y, Azmi AS, Korc M, Sarkar FH. 2013. Activated K-Ras and INK4a/Arf deficiency promote aggressiveness of pancreatic cancer by induction of EMT consistent with cancer stem cell phenotype. J Cell Physiol 228:556–562. http://dx.doi.org/10.1002/jcp.24162.
  • Wang Z, Banerjee S, Ahmad A, Li Y, Azmi AS, Gunn JR, Kong D, Bao B, Ali S, Gao J, Mohammad RM, Miele L, Korc M, Sarkar FH. 2011. Activated K-ras and INK4a/Arf deficiency cooperate during the development of pancreatic cancer by activation of Notch and NF-kappaB signaling pathways. PLoS One 6:e20537. http://dx.doi.org/10.1371/journal.pone.0020537.
  • Johnson R, Spiegelman B, Hanahan D, Wisdom R. 1996. Cellular transformation and malignancy induced by ras require c-jun. Mol Cell Biol 16:4504–4511. http://dx.doi.org/10.1128/MCB.16.8.4504.
  • Smeal T, Binetruy B, Mercola DA, Birrer M, Karin M. 1991. Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature 354:494–496. http://dx.doi.org/10.1038/354494a0.
  • Kivinen L, Tsubari M, Haapajarvi T, Datto MB, Wang XF, Laiho M. 1999. Ras induces p21Cip1/Waf1 cyclin kinase inhibitor transcriptionally through Sp1-binding sites. Oncogene 18:6252–6261. http://dx.doi.org/10.1038/sj.onc.1203000.
  • Ye J, Xu RH, Taylor-Papadimitriou J, Pitha PM. 1996. Sp1 binding plays a critical role in Erb-B2- and v-ras-mediated downregulation of alpha2-integrin expression in human mammary epithelial cells. Mol Cell Biol 16:6178–6189. http://dx.doi.org/10.1128/MCB.16.11.6178.
  • Kolesnikoff N, Attema JL, Roslan S, Bert AG, Schwarz QP, Gregory PA, Goodall GJ. 2014. Specificity protein 1 (Sp1) maintains basal epithelial expression of the miR-200 family: implications for epithelial-mesenchymal transition. J Biol Chem 289:11194–11205. http://dx.doi.org/10.1074/jbc.M113.529172.
  • Zhu W, Xu H, Zhu D, Zhi H, Wang T, Wang J, Jiang B, Shu Y, Liu P. 2012. miR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP. Cancer Chemother Pharmacol 69:723–731. http://dx.doi.org/10.1007/s00280-011-1752-3.
  • Budhram-Mahadeo V, Morris PJ, Smith MD, Midgley CA, Boxer LM, Latchman DS. 1999. p53 suppresses the activation of the Bcl-2 promoter by the Brn-3a POU family transcription factor. J Biol Chem 274:15237–15244. http://dx.doi.org/10.1074/jbc.274.21.15237.
  • Wu Y, Mehew JW, Heckman CA, Arcinas M, Boxer LM. 2001. Negative regulation of bcl-2 expression by p53 in hematopoietic cells. Oncogene 20:240–251. http://dx.doi.org/10.1038/sj.onc.1204067.
  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA. 2008. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715. http://dx.doi.org/10.1016/j.cell.2008.03.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.