59
Views
59
CrossRef citations to date
0
Altmetric
Minireview

Delineating the Structural Blueprint of the Pre-mRNA 3′-End Processing Machinery

, &
Pages 1894-1910 | Published online: 20 Mar 2023

REFERENCES

  • Zhao J, Hyman L, Moore C. 1999. Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol. Mol. Biol. Rev. 63:405–445.
  • Shi Y, Di Giammartino DC, Taylor D, Sarkeshik A, Rice WJ, Yates JRIII, Frank J, Manley JL. 2009. Molecular architecture of the human pre-mRNA 3′ processing complex. Mol. Cell 33:365–376. http://dx.doi.org/10.1016/j.molcel.2008.12.028.
  • Mandel CR, Bai Y, Tong L. 2008. Protein factors in pre-mRNA 3′-end processing. Cell. Mol. Life Sci. 65:1099–1122. http://dx.doi.org/10.1007/s00018-007-7474-3.
  • Moore MJ, Proudfoot NJ. 2009. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136:688–700. http://dx.doi.org/10.1016/j.cell.2009.02.001.
  • Danckwardt S, Hentze MW, Kulozik AE. 2008. 3′ end mRNA processing: molecular mechanisms and implications for health and disease. EMBO J. 27:482–498. http://dx.doi.org/10.1038/sj.emboj.7601932.
  • Di Giammartino DC, Nishida K, Manley JL. 2011. Mechanisms and consequences of alternative polyadenylation. Mol. Cell 43:853–866. http://dx.doi.org/10.1016/j.molcel.2011.08.017.
  • Tian B, Manley JL. 2013. Alternative cleavage and polyadenylation: the long and short of it. Trends Biochem. Sci. 38:312–320. http://dx.doi.org/10.1016/j.tibs.2013.03.005.
  • Ji Z, Lee JY, Pan Z, Jiang B, Tian B. 2009. Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc. Natl. Acad. Sci. U. S. A. 106:7028–7033. http://dx.doi.org/10.1073/pnas.0900028106.
  • Mayr C, Bartel DP. 2009. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138:673–684. http://dx.doi.org/10.1016/j.cell.2009.06.016.
  • Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. 2008. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320:1643–1647. http://dx.doi.org/10.1126/science.1155390.
  • Colgan DF, Manley JL. 1997. Mechanism and regulation of mRNA polyadenylation. Genes Dev. 11:2755–2766. http://dx.doi.org/10.1101/gad.11.21.2755.
  • Proudfoot NJ. 2011. Ending the message: poly(A) signals then and now. Genes Dev. 25:1770–1782. http://dx.doi.org/10.1101/gad.17268411.
  • Yang Q, Doublié S. 2011. Structural biology of poly(A) site definition. Wiley Interdiscip. Rev. RNA 2:732–747. http://dx.doi.org/10.1002/wrna.88.
  • Sheets MD, Ogg SC, Wickens MP. 1990. Point mutations in AAUAAA and the poly(A) addition site: effects on the accuracy and efficiency of cleavage and polyadenylation in vitro. Nucleic Acids Res. 18:5799–5805. http://dx.doi.org/10.1093/nar/18.19.5799.
  • Beaudoing E, Freier S, Wyatt JR, Claverie JM, Gautheret D. 2000. Patterns of variant polyadenylation signal usage in human genes. Genome Res. 10:1001–1010. http://dx.doi.org/10.1101/gr.10.7.1001.
  • Hu J, Lutz CS, Wilusz J, Tian B. 2005. Bioinformatic identification of candidate cis-regulatory elements involved in human mRNA polyadenylation. RNA 11:1485–1493. http://dx.doi.org/10.1261/rna.2107305.
  • Pauws E, van Kampen AH, van de Graaf SA, de Vijlder JJ, Ris-Stalpers C. 2001. Heterogeneity in polyadenylation cleavage sites in mammalian mRNA sequences: implications for SAGE analysis. Nucleic Acids Res. 29:1690–1694. http://dx.doi.org/10.1093/nar/29.8.1690.
  • MacDonald CC, Wilusz J, Shenk T. 1994. The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location. Mol. Cell. Biol. 14:6647–6654.
  • Hart RP, McDevitt MA, Ali H, Nevins JR. 1985. Definition of essential sequences and functional equivalence of elements downstream of the adenovirus E2A and the early simian virus 40 polyadenylation sites. Mol. Cell. Biol. 5:2975–2983.
  • McLauchlan J, Gaffney D, Whitton JL, Clements JB. 1985. The consensus sequence YGTGTTYY located downstream from the AATAAA signal is required for efficient formation of mRNA 3′ termini. Nucleic Acids Res. 13:1347–1368. http://dx.doi.org/10.1093/nar/13.4.1347.
  • Chou ZF, Chen F, Wilusz J. 1994. Sequence and position requirements for uridylate-rich downstream elements of polyadenylation signals. Nucleic Acids Res. 22:2525–2531. http://dx.doi.org/10.1093/nar/22.13.2525.
  • Gil A, Proudfoot NJ. 1987. Position-dependent sequence elements downstream of AAUAAA are required for efficient rabbit beta-globin mRNA 3′ end formation. Cell 49:399–406. http://dx.doi.org/10.1016/0092-8674(87)90292-3.
  • Venkataraman K, Brown KM, Gilmartin GM. 2005. Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition. Genes Dev. 19:1315–1327. http://dx.doi.org/10.1101/gad.1298605.
  • Heidmann S, Schindewolf C, Stumpf G, Domdey H. 1994. Flexibility and interchangeability of polyadenylation signals in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:4633–4642.
  • Guo Z, Sherman F. 1995. 3′-end-forming signals of yeast mRNA. Mol. Cell. Biol. 15:5983–5990.
  • Dichtl B, Keller W. 2001. Recognition of polyadenylation sites in yeast pre-mRNAs by cleavage and polyadenylation factor. EMBO J. 20:3197–3209. http://dx.doi.org/10.1093/emboj/20.12.3197.
  • Graber JH, Cantor CR, Mohr SC, Smith TF. 1999. In silico detection of control signals: mRNA 3′-end-processing sequences in diverse species. Proc. Natl. Acad. Sci. U. S. A. 96:14055–14060. http://dx.doi.org/10.1073/pnas.96.24.14055.
  • Moore CL, Sharp PA. 1985. Accurate cleavage and polyadenylation of exogenous RNA substrate. Cell 41:845–855. http://dx.doi.org/10.1016/S0092-8674(85)80065-9.
  • Christofori G, Keller W. 1988. 3′ cleavage and polyadenylation of mRNA precursors in vitro requires a poly(A) polymerase, a cleavage factor, and a snRNP. Cell 54:875–889. http://dx.doi.org/10.1016/S0092-8674(88)91263-9.
  • Gilmartin GM, Nevins JR. 1989. An ordered pathway of assembly of components required for polyadenylation site recognition and processing. Genes Dev. 3:2180–2190. http://dx.doi.org/10.1101/gad.3.12b.2180.
  • Takagaki Y, Ryner LC, Manley JL. 1989. Four factors are required for 3′-end cleavage of pre-mRNAs. Genes Dev. 3:1711–1724. http://dx.doi.org/10.1101/gad.3.11.1711.
  • Wahle E. 1991. A novel poly(A)-binding protein acts as a specificity factor in the second phase of messenger RNA polyadenylation. Cell 66:759–768. http://dx.doi.org/10.1016/0092-8674(91)90119-J.
  • McCracken S, Fong N, Yankulov K, Ballantyne S, Pan G, Greenblatt J, Patterson SD, Wickens M, Bentley DL. 1997. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385:357–361. http://dx.doi.org/10.1038/385357a0.
  • Hirose Y, Manley JL. 1998. RNA polymerase II is an essential mRNA polyadenylation factor. Nature 395:93–96. http://dx.doi.org/10.1038/25786.
  • Takagaki Y, Manley JL. 2000. Complex protein interactions within the human polyadenylation machinery identify a novel component. Mol. Cell. Biol. 20:1515–1525. http://dx.doi.org/10.1128/MCB.20.5.1515-1525.2000.
  • Bienroth S, Wahle E, Suter-Crazzolara C, Keller W. 1991. Purification of the cleavage and polyadenylation factor involved in the 3′-processing of messenger RNA precursors. J. Biol. Chem. 266:19768–19776.
  • Dantonel JC, Murthy KG, Manley JL, Tora L. 1997. Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA. Nature 389:399–402. http://dx.doi.org/10.1038/38763.
  • Murthy KG, Manley JL. 1992. Characterization of the multisubunit cleavage-polyadenylation specificity factor from calf thymus. J. Biol. Chem. 267:14804–14811.
  • Kaufmann I, Martin G, Friedlein A, Langen H, Keller W. 2004. Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase. EMBO J. 23:616–626. http://dx.doi.org/10.1038/sj.emboj.7600070.
  • Dominski Z. 2010. The hunt for the 3′ endonuclease. Wiley Interdiscip. Rev. RNA 1:325–340. http://dx.doi.org/10.1002/wrna.33.
  • Callebaut I, Moshous D, Mornon J-P, de Villartay J-P. 2002. Metallo-beta-lactamase fold within nucleic acids processing enzymes: the beta-CASP family. Nucleic Acids Res. 30:3592–3601. http://dx.doi.org/10.1093/nar/gkf470.
  • Ryan K, Calvo O, Manley JL. 2004. Evidence that polyadenylation factor CPSF-73 is the mRNA 3′ processing endonuclease. RNA 10:565–573. http://dx.doi.org/10.1261/rna.5214404.
  • Mandel CR, Kaneko S, Zhang H, Gebauer D, Vethantham V, Manley JL, Tong L. 2006. Polyadenylation factor CPSF-73 is the pre-mRNA 3′-end-processing endonuclease. Nature 444:953–956. http://dx.doi.org/10.1038/nature05363.
  • Li de la Sierra-Gallay I, Zig L, Jamalli A, Putzer H. 2008. Structural insights into the dual activity of RNase J. Nat. Struct. Mol. Biol. 15:206–212. http://dx.doi.org/10.1038/nsmb.1376.
  • Nishida Y, Ishikawa H, Baba S, Nakagawa N, Kuramitsu S, Masui R. 2010. Crystal structure of an archaeal cleavage and polyadenylation specificity factor subunit from Pyrococcus horikoshii. Proteins 78:2395–2398. http://dx.doi.org/10.1002/prot.22748.
  • Mir-Montazeri B, Ammelburg M, Forouzan D, Lupas AN, Hartmann MD. 2011. Crystal structure of a dimeric archaeal cleavage and polyadenylation specificity factor. J. Struct. Biol. 173:191–195. http://dx.doi.org/10.1016/j.jsb.2010.09.013.
  • Silva APG, Chechik M, Byrne RT, Waterman DG, Ng CL, Dodson EJ, Koonin EV, Antson AA, Smits C. 2011. Structure and activity of a novel archaeal β-CASP protein with N-terminal KH domains. Structure 19:622–632. http://dx.doi.org/10.1016/j.str.2011.03.002.
  • Kolev NG, Yario TA, Benson E, Steitz JA. 2008. Conserved motifs in both CPSF73 and CPSF100 are required to assemble the active endonuclease for histone mRNA 3′-end maturation. EMBO Rep. 9:1013–1018. http://dx.doi.org/10.1038/embor.2008.146.
  • Jenny A, Minvielle-Sebastia L, Preker PJ, Keller W. 1996. Sequence similarity between the 73-kilodalton protein of mammalian CPSF and a subunit of yeast polyadenylation factor I. Science 274:1514–1517. http://dx.doi.org/10.1126/science.274.5292.1514.
  • Kyburz A, Sadowski M, Dichtl B, Keller W. 2003. The role of the yeast cleavage and polyadenylation factor subunit Ydh1p/Cft2p in pre-mRNA 3′-end formation. Nucleic Acids Res. 31:3936–3945. http://dx.doi.org/10.1093/nar/gkg478.
  • Preker PJ, Ohnacker M, Minvielle-Sebastia L, Keller W. 1997. A multisubunit 3′ end processing factor from yeast containing poly(A) polymerase and homologues of the subunits of mammalian cleavage and polyadenylation specificity factor. EMBO J. 16:4727–4737. http://dx.doi.org/10.1093/emboj/16.15.4727.
  • Zhao J, Kessler MM, Moore CL. 1997. Cleavage factor II of Saccharomyces cerevisiae contains homologues to subunits of the mammalian cleavage/polyadenylation specificity factor and exhibits sequence-specific, ATP-dependent interaction with precursor RNA. J. Biol. Chem. 272:10831–10838. http://dx.doi.org/10.1074/jbc.272.16.10831.
  • Dominski Z, Yang X-C, Purdy M, Wagner EJ, Marzluff WF. 2005. A CPSF-73 homologue is required for cell cycle progression but not cell growth and interacts with a protein having features of CPSF-100. Mol. Cell. Biol. 25:1489–1500. http://dx.doi.org/10.1128/MCB.25.4.1489-1500.2005.
  • Dominski Z. 2007. Nucleases of the metallo-beta-lactamase family and their role in DNA and RNA metabolism. Crit. Rev. Biochem. Mol. Biol. 42:67–93. http://dx.doi.org/10.1080/10409230701279118.
  • Barabino SM, Hübner W, Jenny A, Minvielle-Sebastia L, Keller W. 1997. The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins. Genes Dev. 11:1703–1716. http://dx.doi.org/10.1101/gad.11.13.1703.
  • Barabino SM, Ohnacker M, Keller W. 2000. Distinct roles of two Yth1p domains in 3′-end cleavage and polyadenylation of yeast pre-mRNAs. EMBO J. 19:3778–3787. http://dx.doi.org/10.1093/emboj/19.14.3778.
  • D'Souza V, Summers MF. 2004. Structural basis for packaging the dimeric genome of Moloney murine leukaemia virus. Nature 431:586–590. http://dx.doi.org/10.1038/nature02944.
  • Hudson BP, Martinez-Yamout MA, Dyson HJ, Wright PE. 2004. Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nat. Struct. Mol. Biol. 11:257–264. http://dx.doi.org/10.1038/nsmb738.
  • Jenny A, Hauri HP, Keller W. 1994. Characterization of cleavage and polyadenylation specificity factor and cloning of its 100-kilodalton subunit. Mol. Cell. Biol. 14:8183–8190.
  • Tacahashi Y, Helmling S, Moore CL. 2003. Functional dissection of the zinc finger and flanking domains of the Yth1 cleavage/polyadenylation factor. Nucleic Acids Res. 31:1744–1752. http://dx.doi.org/10.1093/nar/gkg265.
  • Nemeroff ME, Barabino SM, Li Y, Keller W, Krug RM. 1998. Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3′end formation of cellular pre-mRNAs. Mol. Cell 1:991–1000. http://dx.doi.org/10.1016/S1097-2765(00)80099-4.
  • Das K, Ma L-C, Xiao R, Radvansky B, Aramini J, Zhao L, Marklund J, Kuo R-L, Twu KY, Arnold E, Krug RM, Montelione GT. 2008. Structural basis for suppression of a host antiviral response by influenza A virus. Proc. Natl. Acad. Sci. U. S. A. 105:13093–13098. http://dx.doi.org/10.1073/pnas.0805213105.
  • Nag A, Narsinh K, Martinson HG. 2007. The poly(A)-dependent transcriptional pause is mediated by CPSF acting on the body of the polymerase. Nat. Struct. Mol. Biol. 14:662–669. http://dx.doi.org/10.1038/nsmb1253.
  • Neuwald AF, Poleksic A. 2000. PSI-BLAST searches using hidden Markov models of structural repeats: prediction of an unusual sliding DNA clamp and of beta-propellers in UV-damaged DNA-binding protein. Nucleic Acids Res. 28:3570–3580. http://dx.doi.org/10.1093/nar/28.18.3570.
  • Angers S, Li T, Yi X, MacCoss MJ, Moon RT, Zheng N. 2006. Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 443:590–593. (Letter.) http://dx.doi.org/10.1038/nature05175.
  • Scrima A, Konícková R, Czyzewski BK, Kawasaki Y, Jeffrey PD, Groisman R, Nakatani Y, Iwai S, Pavletich NP, Thomä NH. 2008. Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex. Cell 135:1213–1223. http://dx.doi.org/10.1016/j.cell.2008.10.045.
  • Stirnimann CU, Petsalaki E, Russell RB, Müller CW. 2010. WD40 proteins propel cellular networks. Trends Biochem. Sci. 35:565–574. http://dx.doi.org/10.1016/j.tibs.2010.04.003.
  • Keller W, Bienroth S, Lang KM, Christofori G. 1991. Cleavage and polyadenylation factor CPF specifically interacts with the pre-mRNA 3′ processing signal AAUAAA. EMBO J. 10:4241–4249.
  • Murthy KG, Manley JL. 1995. The 160-kD subunit of human cleavage-polyadenylation specificity factor coordinates pre-mRNA 3′-end formation. Genes Dev. 9:2672–2683. http://dx.doi.org/10.1101/gad.9.21.2672.
  • Dichtl B, Blank D, Sadowski M, Hübner W, Weiser S, Keller W. 2002. Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination. EMBO J. 21:4125–4135. http://dx.doi.org/10.1093/emboj/cdf390.
  • Preker PJ, Lingner J, Minvielle-Sebastia L, Keller W. 1995. The FIP1 gene encodes a component of a yeast pre-mRNA polyadenylation factor that directly interacts with poly(A) polymerase. Cell 81:379–389. http://dx.doi.org/10.1016/0092-8674(95)90391-7.
  • Meinke G, Ezeokonkwo C, Balbo P, Stafford W, Moore C, Bohm A. 2008. Structure of yeast poly(A) polymerase in complex with a peptide from Fip1, an intrinsically disordered protein. Biochemistry 47:6859–6869. http://dx.doi.org/10.1021/bi800204k.
  • Forbes KP, Addepalli B, Hunt AG. 2006. An Arabidopsis Fip1 homolog interacts with RNA and provides conceptual links with a number of other polyadenylation factor subunits. J. Biol. Chem. 281:176–186. http://dx.doi.org/10.1074/jbc.M510964200.
  • Ezeokonkwo C, Zhelkovsky A, Lee R, Bohm A, Moore CL. 2011. A flexible linker region in Fip1 is needed for efficient mRNA polyadenylation. RNA 17:652–664. http://dx.doi.org/10.1261/rna.2273111.
  • Gunasekaran K, Tsai C-J, Kumar S, Zanuy D, Nussinov R. 2003. Extended disordered proteins: targeting function with less scaffold. Trends Biochem. Sci. 28:81–85. http://dx.doi.org/10.1016/S0968-0004(03)00003-3.
  • Ito S, Sakai A, Nomura T, Miki Y, Ouchida M, Sasaki J, Shimizu K. 2001. A novel WD40 repeat protein, WDC146, highly expressed during spermatogenesis in a stage-specific manner. Biochem. Biophys. Res. Commun. 280:656–663. http://dx.doi.org/10.1006/bbrc.2000.4163.
  • Ohnacker M, Barabino SM, Preker PJ, Keller W. 2000. The WD-repeat protein pfs2p bridges two essential factors within the yeast pre-mRNA 3′-end-processing complex. EMBO J. 19:37–47. http://dx.doi.org/10.1093/emboj/19.1.37.
  • Ghazy MA, Gordon JMB, Lee SD, Singh BN, Bohm A, Hampsey M, Moore C. 2012. The interaction of Pcf11 and Clp1 is needed for mRNA 3′-end formation and is modulated by amino acids in the ATP-binding site. Nucleic Acids Res. 40:1214–1225. http://dx.doi.org/10.1093/nar/gkr801.
  • Wang S-W, Asakawa K, Win TZ, Toda T, Norbury CJ. 2005. Inactivation of the pre-mRNA cleavage and polyadenylation factor Pfs2 in fission yeast causes lethal cell cycle defects. Mol. Cell. Biol. 25:2288–2296. http://dx.doi.org/10.1128/MCB.25.6.2288-2296.2005.
  • Gilmartin GM, Nevins JR. 1991. Molecular analyses of two poly(A) site-processing factors that determine the recognition and efficiency of cleavage of the pre-mRNA. Mol. Cell. Biol. 11:2432–2438.
  • Wilusz J, Shenk T, Takagaki Y, Manley JL. 1990. A multicomponent complex is required for the AAUAAA-dependent cross-linking of a 64-kilodalton protein to polyadenylation substrates. Mol. Cell. Biol. 10:1244–1248.
  • Takagaki Y, Manley JL, MacDonald CC, Wilusz J, Shenk T. 1990. A multisubunit factor, CstF, is required for polyadenylation of mammalian pre-mRNAs. Genes Dev. 4:2112–2120. http://dx.doi.org/10.1101/gad.4.12a.2112.
  • Preker PJ, Keller W. 1998. The HAT helix, a repetitive motif implicated in RNA processing. Trends Biochem. Sci. 23:15–16. http://dx.doi.org/10.1016/S0968-0004(97)01156-0.
  • Bai Y, Auperin TC, Chou C-Y, Chang G-G, Manley JL, Tong L. 2007. Crystal structure of murine CstF-77: dimeric association and implications for polyadenylation of mRNA precursors. Mol. Cell 25:863–875. http://dx.doi.org/10.1016/j.molcel.2007.01.034.
  • Legrand P, Pinaud N, Minvielle-Sébastia L, Fribourg S. 2007. The structure of the CstF-77 homodimer provides insights into CstF assembly. Nucleic Acids Res. 35:4515–4522. http://dx.doi.org/10.1093/nar/gkm458.
  • Benoit B, Juge F, Iral F, Audibert A, Simonelig M. 2002. Chimeric human CstF-77/Drosophila Suppressor of forked proteins rescue suppressor of forked mutant lethality and mRNA 3′ end processing in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 99:10593–10598. http://dx.doi.org/10.1073/pnas.162191899.
  • Paulson AR, Tong L. 2012. Crystal structure of the Rna14-Rna15 complex. RNA 18:1154–1162. http://dx.doi.org/10.1261/rna.032524.112.
  • Gordon JMB, Shikov S, Kuehner JN, Liriano M, Lee E, Stafford W, Poulsen MB, Harrison C, Moore C, Bohm A. 2011. Reconstitution of CF IA from overexpressed subunits reveals stoichiometry and provides insights into molecular topology. Biochemistry 50:10203–10214. http://dx.doi.org/10.1021/bi200964p.
  • Takagaki Y, Manley JL. 1994. A polyadenylation factor subunit is the human homologue of the Drosophila suppressor of forked protein. Nature 372:471–474. http://dx.doi.org/10.1038/372471a0.
  • Hockert JA, Yeh H-J, MacDonald CC. 2010. The hinge domain of the cleavage stimulation factor protein CstF-64 is essential for CstF-77 interaction, nuclear localization, and polyadenylation. J. Biol. Chem. 285:695–704. http://dx.doi.org/10.1074/jbc.M109.061705.
  • Moreno-Morcillo M, Minvielle-Sébastia L, Fribourg S, Mackereth CD. 2011. Locked tether formation by cooperative folding of Rna14p monkeytail and Rna15p hinge domains in the yeast CF IA complex. Structure 19:534–545. http://dx.doi.org/10.1016/j.str.2011.02.003.
  • Noble CG, Walker PA, Calder LJ, Taylor IA. 2004. Rna14-Rna15 assembly mediates the RNA-binding capability of Saccharomyces cerevisiae cleavage factor IA. Nucleic Acids Res. 32:3364–3375. http://dx.doi.org/10.1093/nar/gkh664.
  • Wilusz J, Shenk T. 1988. A 64 kd nuclear protein binds to RNA segments that include the AAUAAA polyadenylation motif. Cell 52:221–228. http://dx.doi.org/10.1016/0092-8674(88)90510-7.
  • Takagaki Y, MacDonald CC, Shenk T, Manley JL. 1992. The human 64-kDa polyadenylylation factor contains a ribonucleoprotein-type RNA binding domain and unusual auxiliary motifs. Proc. Natl. Acad. Sci. U. S. A. 89:1403–1407. http://dx.doi.org/10.1073/pnas.89.4.1403.
  • Takagaki Y, Manley JL. 1997. RNA recognition by the human polyadenylation factor CstF. Mol. Cell. Biol. 17:3907–3914.
  • Pérez Cañadillas JM, Varani G. 2003. Recognition of GU-rich polyadenylation regulatory elements by human CstF-64 protein. EMBO J. 22:2821–2830. http://dx.doi.org/10.1093/emboj/cdg259.
  • Pancevac C, Goldstone DC, Ramos A, Taylor IA. 2010. Structure of the Rna15 RRM-RNA complex reveals the molecular basis of GU specificity in transcriptional 3′-end processing factors. Nucleic Acids Res. 38:3119–3132. http://dx.doi.org/10.1093/nar/gkq002.
  • Gross S, Moore CL. 2001. Rna15 interaction with the A-rich yeast polyadenylation signal is an essential step in mRNA 3′-end formation. Mol. Cell. Biol. 21:8045–8055. http://dx.doi.org/10.1128/MCB.21.23.8045-8055.2001.
  • Leeper TC, Qu X, Lu C, Moore C, Varani G. 2010. Novel protein-protein contacts facilitate mRNA 3′-processing signal recognition by Rna15 and Hrp1. J. Mol. Biol. 401:334–349. http://dx.doi.org/10.1016/j.jmb.2010.06.032.
  • Barnwal RP, Lee SD, Moore C, Varani G. 2012. Structural and biochemical analysis of the assembly and function of the yeast pre-mRNA 3′ end processing complex CF I. Proc. Natl. Acad. Sci. U. S. A. 109:21342–21347. http://dx.doi.org/10.1073/pnas.1214102110.
  • Ruepp M-D, Schweingruber C, Kleinschmidt N, Schümperli D. 2011. Interactions of CstF-64, CstF-77, and symplekin: implications on localisation and function. Mol. Biol. Cell 22:91–104. http://dx.doi.org/10.1091/mbc.E10-06-0543.
  • Gross S, Moore C. 2001. Five subunits are required for reconstitution of the cleavage and polyadenylation activities of Saccharomyces cerevisiae cleavage factor I. Proc. Natl. Acad. Sci. U. S. A. 98:6080–6085. http://dx.doi.org/10.1073/pnas.101046598.
  • Qu X, Perez-Canadillas J-M, Agrawal S, De Baecke J, Cheng H, Varani G, Moore C. 2007. The C-terminal domains of vertebrate CstF-64 and its yeast orthologue Rna15 form a new structure critical for mRNA 3′-end processing. J. Biol. Chem. 282:2101–2115. http://dx.doi.org/10.1074/jbc.M609981200.
  • Calvo O, Manley JL. 2001. Evolutionarily conserved interaction between CstF-64 and PC4 links transcription, polyadenylation, and termination. Mol. Cell 7:1013–1023. http://dx.doi.org/10.1016/S1097-2765(01)00236-2.
  • Richardson JM, McMahon KW, MacDonald CC, Makhatadze GI. 1999. MEARA sequence repeat of human CstF-64 polyadenylation factor is helical in solution. A spectroscopic and calorimetric study. Biochemistry 38:12869–12875.
  • Wallace AM, Dass B, Ravnik SE, Tonk V, Jenkins NA, Gilbert DJ, Copeland NG, MacDonald CC. 1999. Two distinct forms of the 64,000 Mr protein of the cleavage stimulation factor are expressed in mouse male germ cells. Proc. Natl. Acad. Sci. U. S. A. 96:6763–6768. http://dx.doi.org/10.1073/pnas.96.12.6763.
  • Li W, Yeh H-J, Shankarling GS, Ji Z, Tian B, MacDonald CC. 2012. The τCstF-64 polyadenylation protein controls genome expression in testis. PLoS One 7:e48373. http://dx.doi.org/10.1371/journal.pone.0048373.
  • Yao C, Choi E-A, Weng L, Xie X, Wan J, Xing Y, Moresco JJ, Tu PG, Yates JRIII, Shi Y. 2013. Overlapping and distinct functions of CstF64 and CstF64τ in mammalian mRNA 3′ processing. RNA 19:1781–1790. http://dx.doi.org/10.1261/rna.042317.113.
  • Takagaki Y, Manley JL. 1992. A human polyadenylation factor is a G protein beta-subunit homologue. J. Biol. Chem. 267:23471–23474.
  • Moreno-Morcillo M, Minvielle-Sébastia L, Mackereth C, Fribourg S. 2011. Hexameric architecture of CstF supported by CstF-50 homodimerization domain structure. RNA 17:412–418. http://dx.doi.org/10.1261/rna.2481011.
  • Kleiman FE, Manley JL. 1999. Functional interaction of BRCA1-associated BARD1 with polyadenylation factor CstF-50. Science 285:1576–1579. http://dx.doi.org/10.1126/science.285.5433.1576.
  • Kleiman FE, Manley JL. 2001. The BARD1-CstF-50 interaction links mRNA 3′ end formation to DNA damage and tumor suppression. Cell 104:743–753. http://dx.doi.org/10.1016/S0092-8674(01)00270-7.
  • Rüegsegger U, Beyer K, Keller W. 1996. Purification and characterization of human cleavage factor Im involved in the 3′ end processing of messenger RNA precursors. J. Biol. Chem. 271:6107–6113. http://dx.doi.org/10.1074/jbc.271.11.6107.
  • Rüegsegger U, Blank D, Keller W. 1998. Human pre-mRNA cleavage factor Im is related to spliceosomal SR proteins and can be reconstituted in vitro from recombinant subunits. Mol. Cell 1:243–253. http://dx.doi.org/10.1016/S1097-2765(00)80025-8.
  • Ruepp M-D, Schümperli D, Barabino SML. 2011. mRNA 3′ end processing and more—multiple functions of mammalian cleavage factor I-68. Wiley Interdiscip. Rev. RNA 2:79–91. http://dx.doi.org/10.1002/wrna.35.
  • Brown KM, Gilmartin GM. 2003. A mechanism for the regulation of pre-mRNA 3′ processing by human cleavage factor Im. Mol. Cell 12:1467–1476. http://dx.doi.org/10.1016/S1097-2765(03)00453-2.
  • Dettwiler S, Aringhieri C, Cardinale S, Keller W, Barabino SML. 2004. Distinct sequence motifs within the 68-kDa subunit of cleavage factor Im mediate RNA binding, protein-protein interactions, and subcellular localization. J. Biol. Chem. 279:35788–35797. http://dx.doi.org/10.1074/jbc.M403927200.
  • McLennan AG. 2006. The Nudix hydrolase superfamily. Cell. Mol. Life Sci. 63:123–143. http://dx.doi.org/10.1007/s00018-005-5386-7.
  • Coseno M, Martin G, Berger C, Gilmartin G, Keller W, Doublié S. 2008. Crystal structure of the 25 kDa subunit of human cleavage factor Im. Nucleic Acids Res. 36:3474–3483. http://dx.doi.org/10.1093/nar/gkn079.
  • Trésaugues L, Stenmark P, Schüler H, Flodin S, Welin M, Nyman T, Hammarström M, Moche M, Gräslund S, Nordlund P. 2008. The crystal structure of human cleavage and polyadenylation specific factor-5 reveals a dimeric Nudix protein with a conserved catalytic site. Proteins 73:1047–1052. http://dx.doi.org/10.1002/prot.22198.
  • Yang Q, Gilmartin GM, Doublié S. 2010. Structural basis of UGUA recognition by the Nudix protein CFI (m)25 and implications for a regulatory role in mRNA 3′ processing. Proc. Natl. Acad. Sci. U. S. A. 107:10062–10067. http://dx.doi.org/10.1073/pnas.1000848107.
  • Awasthi S, Alwine JC. 2003. Association of polyadenylation cleavage factor I with U1 snRNP. RNA 9:1400–1409. http://dx.doi.org/10.1261/rna.5104603.
  • Rappsilber J, Ryder U, Lamond AI, Mann M. 2002. Large-scale proteomic analysis of the human spliceosome. Genome Res. 12:1231–1245. http://dx.doi.org/10.1101/gr.473902.
  • Millevoi S, Loulergue C, Dettwiler S, Karaa SZ, Keller W, Antoniou M, Vagner S. 2006. An interaction between U2AF 65 and CF I(m) links the splicing and 3′ end processing machineries. EMBO J. 25:4854–4864. http://dx.doi.org/10.1038/sj.emboj.7601331.
  • Li H, Tong S, Li X, Shi H, Ying Z, Gao Y, Ge H, Niu L, Teng M. 2011. Structural basis of pre-mRNA recognition by the human cleavage factor Im complex. Cell Res. 21:1039–1051. http://dx.doi.org/10.1038/cr.2011.67.
  • Yang Q, Coseno M, Gilmartin GM, Doublié S. 2011. Crystal structure of a human cleavage factor CFI(m)25/CFI(m)68/RNA complex provides an insight into poly(A) site recognition and RNA looping. Structure 19:368–377. http://dx.doi.org/10.1016/j.str.2010.12.021.
  • Yang Q, Gilmartin GM, Doublié S. 2011. The structure of human cleavage factor I(m) hints at functions beyond UGUA-specific RNA binding: a role in alternative polyadenylation and a potential link to 5′ capping and splicing. RNA Biol. 8:748–753. http://dx.doi.org/10.4161/rna.8.5.16040.
  • Kubo T, Wada T, Yamaguchi Y, Shimizu A, Handa H. 2006. Knock-down of 25 kDa subunit of cleavage factor Im in HeLa cells alters alternative polyadenylation within 3′-UTRs. Nucleic Acids Res. 34:6264–6271. http://dx.doi.org/10.1093/nar/gkl794.
  • Martin G, Gruber AR, Keller W, Zavolan M. 2012. Genome-wide analysis of pre-mRNA 3′ end processing reveals a decisive role of human cleavage factor I in the regulation of 3′ UTR length. Cell Rep. 1:753–763. http://dx.doi.org/10.1016/j.celrep.2012.05.003.
  • de Vries H, Rüegsegger U, Hübner W, Friedlein A, Langen H, Keller W. 2000. Human pre-mRNA cleavage factor II(m) contains homologs of yeast proteins and bridges two other cleavage factors. EMBO J. 19:5895–5904. http://dx.doi.org/10.1093/emboj/19.21.5895.
  • Amrani N, Minet M, Wyers F, Dufour ME, Aggerbeck LP, Lacroute F. 1997. PCF11 encodes a third protein component of yeast cleavage and polyadenylation factor I. Mol. Cell. Biol. 17:1102–1109.
  • Minvielle-Sebastia L, Preker PJ, Wiederkehr T, Strahm Y, Keller W. 1997. The major yeast poly(A)-binding protein is associated with cleavage factor IA and functions in premessenger RNA 3′-end formation. Proc. Natl. Acad. Sci. U. S. A. 94:7897–7902. http://dx.doi.org/10.1073/pnas.94.15.7897.
  • Sadowski M, Dichtl B, Hübner W, Keller W. 2003. Independent functions of yeast Pcf11p in pre-mRNA 3′ end processing and in transcription termination. EMBO J. 22:2167–2177. http://dx.doi.org/10.1093/emboj/cdg200.
  • Meinhart A, Cramer P. 2004. Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors. Nature 430:223–226. http://dx.doi.org/10.1038/nature02679.
  • Noble CG, Hollingworth D, Martin SR, Ennis-Adeniran V, Smerdon SJ, Kelly G, Taylor IA, Ramos A. 2005. Key features of the interaction between Pcf11 CID and RNA polymerase II CTD. Nat. Struct. Mol. Biol. 12:144–151. http://dx.doi.org/10.1038/nsmb887.
  • Barillà D, Lee BA, Proudfoot NJ. 2001. Cleavage/polyadenylation factor IA associates with the carboxyl-terminal domain of RNA polymerase II in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 98:445–450. http://dx.doi.org/10.1073/pnas.021545298.
  • Licatalosi DD, Geiger G, Minet M, Schroeder S, Cilli K, McNeil JB, Bentley DL. 2002. Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II. Mol. Cell 9:1101–1111. http://dx.doi.org/10.1016/S1097-2765(02)00518-X.
  • Hollingworth D, Noble CG, Taylor IA, Ramos A. 2006. RNA polymerase II CTD phosphopeptides compete with RNA for the interaction with Pcf11. RNA 12:555–560. http://dx.doi.org/10.1261/rna.2304506.
  • Zhang Z, Fu J, Gilmour DS. 2005. CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3′-end processing factor, Pcf11. Genes Dev. 19:1572–1580. http://dx.doi.org/10.1101/gad.1296305.
  • West S, Proudfoot NJ. 2008. Human Pcf11 enhances degradation of RNA polymerase II-associated nascent RNA and transcriptional termination. Nucleic Acids Res. 36:905–914. http://dx.doi.org/10.1093/nar/gkm1112.
  • Noble CG, Beuth B, Taylor IA. 2007. Structure of a nucleotide-bound Clp1-Pcf11 polyadenylation factor. Nucleic Acids Res. 35:87–99. http://dx.doi.org/10.1093/nar/gkl1010.
  • Walker JE, Saraste M, Runswick MJ, Gay NJ. 1982. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1:945–951.
  • Haddad R, Maurice F, Viphakone N, Voisinet-Hakil F, Fribourg S, Minvielle-Sébastia L. 2012. An essential role for Clp1 in assembly of polyadenylation complex CF IA and Pol II transcription termination. Nucleic Acids Res. 40:1226–1239. http://dx.doi.org/10.1093/nar/gkr800.
  • Holbein S, Scola S, Loll B, Dichtl BS, Hübner W, Meinhart A, Dichtl B. 2011. The P-loop domain of yeast Clp1 mediates interactions between CF IA and CPF factors in pre-mRNA 3′ end formation. PLoS One 6:e29139. http://dx.doi.org/10.1371/journal.pone.0029139.
  • Weitzer S, Martinez J. 2007. The human RNA kinase hClp1 is active on 3′ transfer RNA exons and short interfering RNAs. Nature 447:222–226. http://dx.doi.org/10.1038/nature05777.
  • Ramirez A, Shuman S, Schwer B. 2008. Human RNA 5′-kinase (hClp1) can function as a tRNA splicing enzyme in vivo. RNA 14:1737–1745. http://dx.doi.org/10.1261/rna.1142908.
  • Keon BH, Schäfer S, Kuhn C, Grund C, Franke WW. 1996. Symplekin, a novel type of tight junction plaque protein. J. Cell Biol. 134:1003–1018. http://dx.doi.org/10.1083/jcb.134.4.1003.
  • Ghazy MA, He X, Singh BN, Hampsey M, Moore C. 2009. The essential N terminus of the Pta1 scaffold protein is required for snoRNA transcription termination and Ssu72 function but is dispensable for pre-mRNA 3′-end processing. Mol. Cell. Biol. 29:2296–2307. http://dx.doi.org/10.1128/MCB.01514-08.
  • Zhao J, Kessler M, Helmling S, O'Connor JP, Moore C. 1999. Pta1, a component of yeast CF II, is required for both cleavage and poly(A) addition of mRNA precursor. Mol. Cell. Biol. 19:7733–7740.
  • Zhelkovsky A, Tacahashi Y, Nasser T, He X, Sterzer U, Jensen TH, Domdey H, Moore C. 2006. The role of the Brr5/Ysh1 C-terminal domain and its homolog Syc1 in mRNA 3′-end processing in Saccharomyces cerevisiae. RNA 12:435–445. http://dx.doi.org/10.1261/rna.2267606.
  • He X, Khan AU, Cheng H, Pappas DLJr, Hampsey M, Moore CL. 2003. Functional interactions between the transcription and mRNA 3′ end processing machineries mediated by Ssu72 and Sub1. Genes Dev. 17:1030–1042. http://dx.doi.org/10.1101/gad.1075203.
  • Kennedy SA, Frazier ML, Steiniger M, Mast AM, Marzluff WF, Redinbo MR. 2009. Crystal structure of the HEAT domain from the pre-mRNA processing factor symplekin. J. Mol. Biol. 392:115–128. http://dx.doi.org/10.1016/j.jmb.2009.06.062.
  • Xiang K, Nagaike T, Xiang S, Kilic T, Beh MM, Manley JL, Tong L. 2010. Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex. Nature 467:729–733. http://dx.doi.org/10.1038/nature09391.
  • Andrade MA, Petosa C, O'Donoghue SI, Müller CW, Bork P. 2001. Comparison of ARM and HEAT protein repeats. J. Mol. Biol. 309:1–18. http://dx.doi.org/10.1006/jmbi.2001.4624.
  • Marzluff WF, Wagner EJ, Duronio RJ. 2008. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat. Rev. Genet. 9:843–854. http://dx.doi.org/10.1038/nrg2438.
  • Hofmann I, Schnölzer M, Kaufmann I, Franke WW. 2002. Symplekin, a constitutive protein of karyo- and cytoplasmic particles involved in mRNA biogenesis in Xenopus laevis oocytes. Mol. Biol. Cell 13:1665–1676. http://dx.doi.org/10.1091/mbc.01-12-0567.
  • Sullivan KD, Steiniger M, Marzluff WF. 2009. A core complex of CPSF73, CPSF100, and symplekin may form two different cleavage factors for processing of poly(A) and histone mRNAs. Mol. Cell 34:322–332. http://dx.doi.org/10.1016/j.molcel.2009.04.024.
  • Cramer P, Bushnell DA, Kornberg RD. 2001. Structural basis of transcription: RNA polymerase II at 2.8 Angstrom resolution. Science 292:1863–1876. http://dx.doi.org/10.1126/science.1059493.
  • Bartkowiak B., Mackellar A. L., Greenleaf A. L. 2011. Updating the CTD story: from tail to epic. Genet. Res. Int. 2011:623718. http://dx.doi.org/10.4061/2011/623718.
  • Hsin J-P, Manley JL. 2012. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev. 26:2119–2137. http://dx.doi.org/10.1101/gad.200303.112.
  • Egloff S, Dienstbier M, Murphy S. 2012. Updating the RNA polymerase CTD code: adding gene-specific layers. Trends Genet. Trends Genet. 28:333–341. http://dx.doi.org/10.1016/j.tig.2012.03.007.
  • Zhang D. W., Rodríguez-Molina J. B., Tietjen J. R., Nemec C. M., Ansari A. Z. 2012. Emerging views on the CTD code. Genet. Res. Int. 2012:347214. http://dx.doi.org/10.1155/2012/347214.
  • Heidemann M, Hintermair C, Voß K, Eick D. 2013. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription. Biochim. Biophys. Acta 1829:55–62. http://dx.doi.org/10.1016/j.bbagrm.2012.08.013.
  • Rodriguez CR, Cho EJ, Keogh MC, Moore CL, Greenleaf AL, Buratowski S. 2000. Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase II. Mol. Cell. Biol. 20:104–112. http://dx.doi.org/10.1128/MCB.20.1.104-112.2000.
  • Bienkiewicz EA, Moon Woody A, Woody RW. 2000. Conformation of the RNA polymerase II C-terminal domain: circular dichroism of long and short fragments. J. Mol. Biol. 297:119–133. http://dx.doi.org/10.1006/jmbi.2000.3545.
  • Jasnovidova O, Stefl R. 2013. The CTD code of RNA polymerase II: a structural view. Wiley Interdiscip. Rev. RNA 4:1–16. http://dx.doi.org/10.1002/wrna.1138.
  • Werner-Allen JW, Lee C-J, Liu P, Nicely NI, Wang S, Greenleaf AL, Zhou P. 2011. cis-proline-mediated Ser(P)5 dephosphorylation by the RNA polymerase II C-terminal domain phosphatase Ssu72. J. Biol. Chem. 286:5717–5726. http://dx.doi.org/10.1074/jbc.M110.197129.
  • Chan S, Choi E-A, Shi Y. 2011. Pre-mRNA 3′-end processing complex assembly and function. Wiley Interdiscip. Rev. RNA 2:321–335. http://dx.doi.org/10.1002/wrna.54.
  • Lingner J, Kellermann J, Keller W. 1991. Cloning and expression of the essential gene for poly(A) polymerase from S. cerevisiae. Nature 354:496–498. http://dx.doi.org/10.1038/354496a0.
  • Raabe T, Bollum FJ, Manley JL. 1991. Primary structure and expression of bovine poly(A) polymerase. Nature 353:229–234. http://dx.doi.org/10.1038/353229a0.
  • Wahle E. 1991. Purification and characterization of a mammalian polyadenylate polymerase involved in the 3′ end processing of messenger RNA precursors. J. Biol. Chem. 266:3131–3139.
  • Edmonds M. 1990. Polyadenylate polymerases. Methods Enzymol. 181:161–170. http://dx.doi.org/10.1016/0076-6879(90)81118-E.
  • Martin G, Keller W. 1996. Mutational analysis of mammalian poly(A) polymerase identifies a region for primer binding and catalytic domain, homologous to the family X polymerases, and to other nucleotidyltransferases. EMBO J. 15:2593–2603.
  • Martin G, Keller W, Doublié S. 2000. Crystal structure of mammalian poly(A) polymerase in complex with an analog of ATP. EMBO J. 19:4193–4203. http://dx.doi.org/10.1093/emboj/19.16.4193.
  • Bard J, Zhelkovsky AM, Helmling S, Earnest TN, Moore CL, Bohm A. 2000. Structure of yeast poly(A) polymerase alone and in complex with 3′-dATP. Science 289:1346–1349. http://dx.doi.org/10.1126/science.289.5483.1346.
  • Balbo PB, Bohm A. 2007. Mechanism of poly(A) polymerase: structure of the enzyme-MgATP-RNA ternary complex and kinetic analysis. Structure 15:1117–1131. http://dx.doi.org/10.1016/j.str.2007.07.010.
  • Balbo PB, Toth J, Bohm A. 2007. X-ray crystallographic and steady state fluorescence characterization of the protein dynamics of yeast polyadenylate polymerase. J. Mol. Biol. 366:1401–1415. http://dx.doi.org/10.1016/j.jmb.2006.12.030.
  • Martin G, Möglich A, Keller W, Doublié S. 2004. Biochemical and structural insights into substrate binding and catalytic mechanism of mammalian poly(A) polymerase. J. Mol. Biol. 341:911–925. http://dx.doi.org/10.1016/j.jmb.2004.06.047.
  • Zhao W, Manley JL. 1996. Complex alternative RNA processing generates an unexpected diversity of poly(A) polymerase isoforms. Mol. Cell. Biol. 16:2378–2386.
  • Colgan DF, Murthy KG, Prives C, Manley JL. 1996. Cell-cycle related regulation of poly(A) polymerase by phosphorylation. Nature 384:282–285. http://dx.doi.org/10.1038/384282a0.
  • Shimazu T, Horinouchi S, Yoshida M. 2007. Multiple histone deacetylases and the CREB-binding protein regulate pre-mRNA 3′-end processing. J. Biol. Chem. 282:4470–4478. http://dx.doi.org/10.1074/jbc.M609745200.
  • Vethantham V, Rao N, Manley JL. 2008. Sumoylation regulates multiple aspects of mammalian poly(A) polymerase function. Genes Dev. 22:499–511. http://dx.doi.org/10.1101/gad.1628208.
  • Di Giammartino DC, Shi Y, Manley JL. 2013. PARP1 represses PAP and inhibits polyadenylation during heat shock. Mol. Cell 49:7–17. http://dx.doi.org/10.1016/j.molcel.2012.11.005.
  • Ezeokonkwo C, Ghazy MA, Zhelkovsky A, Yeh P-C, Moore C. 2012. Novel interactions at the essential N-terminus of poly(A) polymerase that could regulate poly(A) addition in Saccharomyces cerevisiae. FEBS Lett. 586:1173–1178. http://dx.doi.org/10.1016/j.febslet.2012.03.036.
  • Helmling S, Zhelkovsky A, Moore CL. 2001. Fip1 regulates the activity of poly(A) polymerase through multiple interactions. Mol. Cell. Biol. 21:2026–2037. http://dx.doi.org/10.1128/MCB.21.6.2026-2037.2001.
  • Blobel G. 1973. A protein of molecular weight 78,000 bound to the polyadenylate region of eukaryotic messenger RNAs. Proc. Natl. Acad. Sci. U. S. A. 70:924–928. http://dx.doi.org/10.1073/pnas.70.3.924.
  • Bienroth S, Keller W, Wahle E. 1993. Assembly of a processive messenger RNA polyadenylation complex. EMBO J. 12:585–594.
  • Wahle E. 1995. Poly(A) tail length control is caused by termination of processive synthesis. J. Biol. Chem. 270:2800–2808.
  • Brawerman G. 1981. The role of the poly(A) sequence in mammalian messenger RNA. CRC Crit. Rev. Biochem. 10:1–38.
  • Jenal M, Elkon R, Loayza-Puch F, van Haaften G, Kühn U, Menzies FM, Oude Vrielink JAF, Bos AJ, Drost J, Rooijers K, Rubinsztein DC, Agami R. 2012. The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell 149:538–553. http://dx.doi.org/10.1016/j.cell.2012.03.022.
  • Kerwitz Y, Kühn U, Lilie H, Knoth A, Scheuermann T, Friedrich H, Schwarz E, Wahle E. 2003. Stimulation of poly(A) polymerase through a direct interaction with the nuclear poly(A) binding protein allosterically regulated by RNA. EMBO J. 22:3705–3714. http://dx.doi.org/10.1093/emboj/cdg347.
  • Ge H, Zhou D, Tong S, Gao Y, Teng M, Niu L. 2008. Crystal structure and possible dimerization of the single RRM of human PABPN1. Proteins 71:1539–1545. http://dx.doi.org/10.1002/prot.21973.
  • Kühn U, Nemeth A, Meyer S, Wahle E. 2003. The RNA binding domains of the nuclear poly(A)-binding protein. J. Biol. Chem. 278:16916–16925. http://dx.doi.org/10.1074/jbc.M209886200.
  • Keller RW, Kühn U, Aragón M, Bornikova L, Wahle E, Bear DG. 2000. The nuclear poly(A) binding protein, PABP2, forms an oligomeric particle covering the length of the poly(A) tail. J. Mol. Biol. 297:569–583. http://dx.doi.org/10.1006/jmbi.2000.3572.
  • Nemeth A, Krause S, Blank D, Jenny A, Jenö P, Lustig A, Wahle E. 1995. Isolation of genomic and cDNA clones encoding bovine poly(A) binding protein II. Nucleic Acids Res. 23:4034–4041. http://dx.doi.org/10.1093/nar/23.20.4034.
  • Kühn U, Gündel M, Knoth A, Kerwitz Y, Rüdel S, Wahle E. 2009. Poly(A) tail length is controlled by the nuclear poly(A)-binding protein regulating the interaction between poly(A) polymerase and the cleavage and polyadenylation specificity factor. J. Biol. Chem. 284:22803–22814. http://dx.doi.org/10.1074/jbc.M109.018226.
  • Winstall E, Sadowski M, Kuhn U, Wahle E, Sachs AB. 2000. The Saccharomyces cerevisiae RNA-binding protein Rbp29 functions in cytoplasmic mRNA metabolism. J. Biol. Chem. 275:21817–21826. http://dx.doi.org/10.1074/jbc.M002412200.
  • Kühn U, Wahle E. 2004. Structure and function of poly(A) binding proteins. Biochim. Biophys. Acta 1678:67–84. http://dx.doi.org/10.1016/j.bbaexp.2004.03.008.
  • Luo Y, Yogesha SD, Cannon JR, Yan W, Ellington AD, Brodbelt JS, Zhang Y. 2013. Novel modifications on C-terminal domain of RNA polymerase II can fine-tune the phosphatase activity of Ssu72. ACS Chem. Biol. 8:2042–2052. http://dx.doi.org/10.1021/cb400229c.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.