93
Views
26
CrossRef citations to date
0
Altmetric
Article

Quantitative In Vivo Fluorescence Cross-Correlation Analyses Highlight the Importance of Competitive Effects in the Regulation of Protein-Protein Interactions

, , &
Pages 3272-3290 | Received 16 Jan 2014, Accepted 16 Jun 2014, Published online: 20 Mar 2023

REFERENCES

  • Chang L, Karin M. 2001. Mammalian MAP kinase signalling cascades. Nature 410:37–40. http://dx.doi.org/10.1038/35065000.
  • Chen Z, Gibson TB, Robinson F, Silvestro L, Pearson G, Xu B, Wright A, Vanderbilt C, Cobb MH. 2001. MAP kinases. Chem. Rev. 101:2449–2476. http://dx.doi.org/10.1021/cr000241p.
  • Qi M, Elion EA. 2005. MAP kinase pathways. J. Cell Sci. 118:3569–3572. http://dx.doi.org/10.1242/jcs.02470.
  • Bhalla US, Ram PT, Iyengar R. 2002. MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297:1018–1023. http://dx.doi.org/10.1126/science.1068873.
  • Nakakuki T, Birtwistle MR, Saeki Y, Yumoto N, Ide K, Nagashima T, Brusch L, Ogunnaike BA, Okada-Hatakeyama M, Kholodenko BN. 2010. Ligand-specific c-Fos expression emerges from the spatiotemporal control of ErbB network dynamics. Cell 141:884–896. http://dx.doi.org/10.1016/j.cell.2010.03.054.
  • Sasagawa S, Ozaki Y, Fujita K, Kuroda S. 2005. Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nat. Cell Biol. 7:365–373. http://dx.doi.org/10.1038/ncb1233.
  • Schoeberl B, Eichler-Jonsson C, Gilles ED, Muller G. 2002. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol. 20:370–375. http://dx.doi.org/10.1038/nbt0402-370.
  • Bandyopadhyay S, Chiang CY, Srivastava J, Gersten M, White S, Bell R, Kurschner C, Martin C, Smoot M, Sahasrabudhe S, Barber DL, Chanda SK, Ideker T. 2010. A human MAP kinase interactome. Nat. Methods 7:801–805. http://dx.doi.org/10.1038/nmeth.1506.
  • Aoki K, Yamada M, Kunida K, Yasuda S, Matsuda M. 2011. Processive phosphorylation of ERK MAP kinase in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 108:12675–12680. http://dx.doi.org/10.1073/pnas.1104030108.
  • Kasai RS, Suzuki KG, Prossnitz ER, Koyama-Honda I, Nakada C, Fujiwara TK, Kusumi A. 2011. Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J. Cell Biol. 192:463–480. http://dx.doi.org/10.1083/jcb.201009128.
  • Shi X, Foo YH, Sudhaharan T, Chong SW, Korzh V, Ahmed S, Wohland T. 2009. Determination of dissociation constants in living zebrafish embryos with single wavelength fluorescence cross-correlation spectroscopy. Biophys. J. 97:678–686. http://dx.doi.org/10.1016/j.bpj.2009.05.006.
  • Sudhaharan T, Liu P, Foo YH, Bu W, Lim KB, Wohland T, Ahmed S. 2009. Determination of in vivo dissociation constant, KD, of Cdc42-effector complexes in live mammalian cells using single wavelength fluorescence cross-correlation spectroscopy. J. Biol. Chem. 284:13602–13609. http://dx.doi.org/10.1074/jbc.M900894200.
  • Minton AP. 2001. The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J. Biol. Chem. 276:10577–10580. http://dx.doi.org/10.1074/jbc.R100005200.
  • Minton AP. 1983. The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences. Mol. Cell. Biochem. 55:119–140. http://dx.doi.org/10.1007/BF00673707.
  • Zimmerman SB, Minton AP. 1993. Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu. Rev. Biophys. Biomol. Struct. 22:27–65. http://dx.doi.org/10.1146/annurev.bb.22.060193.000331.
  • Bacia K, Kim SA, Schwille P. 2006. Fluorescence cross-correlation spectroscopy in living cells. Nat. Methods 3:83–89. http://dx.doi.org/10.1038/nmeth822.
  • Akagi T, Sasai K, Hanafusa H. 2003. Refractory nature of normal human diploid fibroblasts with respect to oncogene-mediated transformation. Proc. Natl. Acad. Sci. U. S. A. 100:13567–13572. http://dx.doi.org/10.1073/pnas.1834876100.
  • Niwa H, Yamamura K, Miyazaki J. 1991. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199. http://dx.doi.org/10.1016/0378-1119(91)90434-D.
  • Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA, Emery CM, Stransky N, Cogdill AP, Barretina J, Caponigro G, Hieronymus H, Murray RR, Salehi-Ashtiani K, Hill DE, Vidal M, Zhao JJ, Yang X, Alkan O, Kim S, Harris JL, Wilson CJ, Myer VE, Finan PM, Root DE, Roberts TM, Golub T, Flaherty KT, Dummer R, Weber BL, Sellers WR, Schlegel R, Wargo JA, Hahn WC, Garraway LA. 2010. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468:968–972. http://dx.doi.org/10.1038/nature09627.
  • Gotoh N, Toyoda M, Shibuya M. 1997. Tyrosine phosphorylation sites at amino acids 239 and 240 of Shc are involved in epidermal growth factor-induced mitogenic signaling that is distinct from Ras/mitogen-activated protein kinase activation. Mol. Cell. Biol. 17:1824–1831.
  • Matuoka K, Shibata M, Yamakawa A, Takenawa T. 1992. Cloning of ASH, a ubiquitous protein composed of one Src homology region (SH) 2 and two SH3 domains, from human and rat cDNA libraries. Proc. Natl. Acad. Sci. U. S. A. 89:9015–9019. http://dx.doi.org/10.1073/pnas.89.19.9015.
  • Kamioka Y, Yasuda S, Fujita Y, Aoki K, Matsuda M. 2010. Multiple decisive phosphorylation sites for the negative feedback regulation of SOS1 via ERK. J. Biol. Chem. 285:33540–33548. http://dx.doi.org/10.1074/jbc.M110.135517.
  • Aoki K, Nakamura T, Inoue T, Meyer T, Matsuda M. 2007. An essential role for the SHIP2-dependent negative feedback loop in neuritogenesis of nerve growth factor-stimulated PC12 cells. J. Cell Biol. 177:817–827. http://dx.doi.org/10.1083/jcb.200609017.
  • Terai K, Matsuda M. 2005. Ras binding opens c-Raf to expose the docking site for mitogen-activated protein kinase kinase. EMBO Rep. 6:251–255. http://dx.doi.org/10.1038/sj.embor.7400349.
  • Terai K, Matsuda M. 2006. The amino-terminal B-Raf-specific region mediates calcium-dependent homo- and hetero-dimerization of Raf. EMBO J. 25:3556–3564. http://dx.doi.org/10.1038/sj.emboj.7601241.
  • Torii S, Kusakabe M, Yamamoto T, Maekawa M, Nishida E. 2004. Sef is a spatial regulator for Ras/MAP kinase signaling. Dev. Cell 7:33–44. http://dx.doi.org/10.1016/j.devcel.2004.05.019.
  • Komatsu N, Aoki K, Yamada M, Yukinaga H, Fujita Y, Kamioka Y, Matsuda M. 2011. Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol. Biol. Cell 22:4647–4656. http://dx.doi.org/10.1091/mbc.E11-01-0072.
  • Yusa K, Rad R, Takeda J, Bradley A. 2009. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat. Methods 6:363–369. http://dx.doi.org/10.1038/nmeth.1323.
  • Kinjo M, Sakata H, Mikuni S. 2011. Basic fluorescence correlation spectroscopy setup and measurement. Cold Spring Harb. Protoc. 2011:1262–1266. http://dx.doi.org/10.1101/pdb.prot065938.
  • Bogdanov AM, Bogdanova EA, Chudakov DM, Gorodnicheva TV, Lukyanov S, Lukyanov KA. 2009. Cell culture medium affects GFP photostability: a solution. Nat. Methods 6:859–860. http://dx.doi.org/10.1038/nmeth1209-859.
  • Magde D, Elson EL, Webb WW. 1974. Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29–61.
  • Kogure T, Karasawa S, Araki T, Saito K, Kinjo M, Miyawaki A. 2006. A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nat. Biotechnol. 24:577–581. http://dx.doi.org/10.1038/nbt1207.
  • Funahashi A, Morohashi M, Kitano H, Tanimura N. 2003. CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 1:159–162. http://dx.doi.org/10.1016/S1478-5382(03)02370-9.
  • Kitano H, Funahashi A, Matsuoka Y, Oda K. 2005. Using process diagrams for the graphical representation of biological networks. Nat. Biotechnol. 23:961–966. http://dx.doi.org/10.1038/nbt1111.
  • Sauro HM, Hucka M, Finney A, Wellock C, Bolouri H, Doyle J, Kitano H. 2003. Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration. OMICS 7:355–372. http://dx.doi.org/10.1089/153623103322637670.
  • Maeder CI, Hink MA, Kinkhabwala A, Mayr R, Bastiaens PI, Knop M. 2007. Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling. Nat. Cell Biol. 9:1319–1326. http://dx.doi.org/10.1038/ncb1652.
  • Slaughter BD, Schwartz JW, Li R. 2007. Mapping dynamic protein interactions in MAP kinase signaling using live-cell fluorescence fluctuation spectroscopy and imaging. Proc. Natl. Acad. Sci. U. S. A. 104:20320–20325. http://dx.doi.org/10.1073/pnas.0710336105.
  • Foo YH, Naredi-Rainer N, Lamb DC, Ahmed S, Wohland T. 2012. Factors affecting the quantification of biomolecular interactions by fluorescence cross-correlation spectroscopy. Biophys. J. 102:1174–1183. http://dx.doi.org/10.1016/j.bpj.2012.01.040.
  • Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Ohana RF, Urh M, Simpson D, Mendez J, Zimmerman K, Otto P, Vidugiris G, Zhu J, Darzins A, Klaubert DH, Bulleit RF, Wood KV. 2008. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3:373–382. http://dx.doi.org/10.1021/cb800025k.
  • Rozakis-Adcock M, McGlade J, Mbamalu G, Pelicci G, Daly R, Li W, Batzer A, Thomas S, Brugge J, Pelicci PG, Schlessinger J, Pawson T. 1992. Association of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature 360:689–692. http://dx.doi.org/10.1038/360689a0.
  • Skolnik EY, Lee CH, Batzer A, Vicentini LM, Zhou M, Daly R, Myers MJJr, Backer JM, Ullrich A, White MF, Schlessinger J. 1993. The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of ras signalling. EMBO J. 12:1929–1936.
  • Cherniack AD, Klarlund JK, Conway BR, Czech MP. 1995. Disassembly of Son-of-sevenless proteins from Grb2 during p21ras desensitization by insulin. J. Biol. Chem. 270:1485–1488. http://dx.doi.org/10.1074/jbc.270.4.1485.
  • Corbalan-Garcia S, Degenhardt KR, Bar-Sagi D. 1996. Insulin-induced dissociation of Sos from Grb2 does not contribute to the down regulation of Ras activation. Oncogene 12:1063–1068.
  • Rozakis-Adcock M, van der Geer P, Mbamalu G, Pawson T. 1995. MAP kinase phosphorylation of mSos1 promotes dissociation of mSos1-Shc and mSos1-EGF receptor complexes. Oncogene 11:1417–1426.
  • Chiu VK, Bivona T, Hach A, Sajous JB, Silletti J, Wiener H, Johnson RLII, Cox AD, Philips MR. 2002. Ras signalling on the endoplasmic reticulum and the Golgi. Nat. Cell Biol. 4:343–350. http://dx.doi.org/10.1038/ncb783.
  • Hancock JF, Paterson H, Marshall CJ. 1990. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63:133–139. http://dx.doi.org/10.1016/0092-8674(90)90294-O.
  • Fukuda M, Gotoh Y, Nishida E. 1997. Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J. 16:1901–1908. http://dx.doi.org/10.1093/emboj/16.8.1901.
  • Dimitri CA, Dowdle W, MacKeigan JP, Blenis J, Murphy LO. 2005. Spatially separate docking sites on ERK2 regulate distinct signaling events in vivo. Curr. Biol. 15:1319–1324. http://dx.doi.org/10.1016/j.cub.2005.06.037.
  • Smith L, Parizi-Robinson M, Zhu MS, Zhi G, Fukui R, Kamm KE, Stull JT. 2002. Properties of long myosin light chain kinase binding to F-actin in vitro and in vivo. J. Biol. Chem. 277:35597–35604. http://dx.doi.org/10.1074/jbc.M206483200.
  • Zhao Y, Bjorbaek C, Moller DE. 1996. Regulation and interaction of pp90(rsk) isoforms with mitogen-activated protein kinases. J. Biol. Chem. 271:29773–29779. http://dx.doi.org/10.1074/jbc.271.47.29773.
  • Fujioka A, Terai K, Itoh RE, Aoki K, Nakamura T, Kuroda S, Nishida E, Matsuda M. 2006. Dynamics of the Ras/ERK MAPK cascade as monitored by fluorescent probes. J. Biol. Chem. 281:8917–8926. http://dx.doi.org/10.1074/jbc.M509344200.
  • Matsunaga-Udagawa R, Fujita Y, Yoshiki S, Terai K, Kamioka Y, Kiyokawa E, Yugi K, Aoki K, Matsuda M. 2010. The scaffold protein Shoc2/SUR-8 accelerates the interaction of Ras and Raf. J. Biol. Chem. 285:7818–7826. http://dx.doi.org/10.1074/jbc.M109.053975.
  • Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T. 2006. Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol. Cell. Proteomics 5:749–757. http://dx.doi.org/10.1074/mcp.T500024-MCP200.
  • Jones RB, Gordus A, Krall JA, MacBeath G. 2006. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439:168–174. http://dx.doi.org/10.1038/nature04177.
  • Porfiri E, McCormick F. 1996. Regulation of epidermal growth factor receptor signaling by phosphorylation of the ras exchange factor hSOS1. J. Biol. Chem. 271:5871–5877. http://dx.doi.org/10.1074/jbc.271.10.5871.
  • Ghosh S, Strum JC, Sciorra VA, Daniel L, Bell RM. 1996. Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid. Phosphatidic acid regulates the translocation of Raf-1 in 12-O-tetradecanoylphorbol-13-acetate-stimulated Madin-Darby canine kidney cells. J. Biol. Chem. 271:8472–8480.
  • Ghosh S, Xie WQ, Quest AF, Mabrouk GM, Strum JC, Bell RM. 1994. The cysteine-rich region of raf-1 kinase contains zinc, translocates to liposomes, and is adjacent to a segment that binds GTP-ras. J. Biol. Chem. 269:10000–10007.
  • Kolch W. 2005. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat. Rev. Mol. Cell Biol. 6:827–837. http://dx.doi.org/10.1038/nrm1743.
  • Shaul YD, Seger R. 2007. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim. Biophys. Acta 1773:1213–1226. http://dx.doi.org/10.1016/j.bbamcr.2006.10.005.
  • Shaw AS, Filbert EL. 2009. Scaffold proteins and immune-cell signalling. Nat. Rev. Immunol. 9:47–56. http://dx.doi.org/10.1038/nri2473.
  • Chook YM, Gish GD, Kay CM, Pai EF, Pawson T. 1996. The Grb2-mSos1 complex binds phosphopeptides with higher affinity than Grb2. J. Biol. Chem. 271:30472–30478. http://dx.doi.org/10.1074/jbc.271.48.30472.
  • Sastry L, Lin W, Wong WT, Di Fiore PP, Scoppa CA, King CR. 1995. Quantitative analysis of Grb2-Sos1 interaction: the N-terminal SH3 domain of Grb2 mediates affinity. Oncogene 11:1107–1112.
  • Houtman JC, Yamaguchi H, Barda-Saad M, Braiman A, Bowden B, Appella E, Schuck P, Samelson LE. 2006. Oligomerization of signaling complexes by the multipoint binding of GRB2 to both LAT and SOS1. Nat. Struct. Mol. Biol. 13:798–805. http://dx.doi.org/10.1038/nsmb1133.
  • Lemmon MA, Ladbury JE, Mandiyan V, Zhou M, Schlessinger J. 1994. Independent binding of peptide ligands to the SH2 and SH3 domains of Grb2. J. Biol. Chem. 269:31653–31658.
  • Kiel C, Filchtinski D, Spoerner M, Schreiber G, Kalbitzer HR, Herrmann C. 2009. Improved binding of raf to Ras. GDP is correlated with biological activity. J. Biol. Chem. 284:31893–31902. http://dx.doi.org/10.1074/jbc.M109.031153.
  • Block C, Janknecht R, Herrmann C, Nassar N, Wittinghofer A. 1996. Quantitative structure-activity analysis correlating Ras/Raf interaction in vitro to Raf activation in vivo. Nat. Struct. Biol. 3:244–251. http://dx.doi.org/10.1038/nsb0396-244.
  • Fischer A, Hekman M, Kuhlmann J, Rubio I, Wiese S, Rapp UR. 2007. B- and C-RAF display essential differences in their binding to Ras: the isotype-specific N terminus of B-RAF facilitates Ras binding. J. Biol. Chem. 282:26503–26516. http://dx.doi.org/10.1074/jbc.M607458200.
  • Barbero N, Napione L, Visentin S, Alvaro M, Veglio A, Bussolino F, Viscardi G. 2011. A transient kinetic study between signaling proteins: the case of the MEK-ERK interaction. Chem. Sci. 2:1804–1809. http://dx.doi.org/10.1039/c1sc00268f.
  • Haystead TA, Dent P, Wu J, Haystead CM, Sturgill TW. 1992. Ordered phosphorylation of p42mapk by MAP kinase kinase. FEBS Lett. 306:17–22. http://dx.doi.org/10.1016/0014-5793(92)80828-5.
  • Mansour SJ, Candia JM, Matsuura JE, Manning MC, Ahn NG. 1996. Interdependent domains controlling the enzymatic activity of mitogen-activated protein kinase kinase 1. Biochemistry 35:15529–15536. http://dx.doi.org/10.1021/bi961854s.
  • Burkhard KA, Chen F, Shapiro P. 2011. Quantitative analysis of ERK2 interactions with substrate proteins: roles for kinase docking domains and activity in determining binding affinity. J. Biol. Chem. 286:2477–2485. http://dx.doi.org/10.1074/jbc.M110.177899.
  • Yoshiki S, Matsunaga-Udagawa R, Aoki K, Kamioka Y, Kiyokawa E, Matsuda M. 2010. Ras and calcium signaling pathways converge at Raf1 via the Shoc2 scaffold protein. Mol. Biol. Cell 21:1088–1096. http://dx.doi.org/10.1091/mbc.E09-06-0455.
  • Gureasko J, Galush WJ, Boykevisch S, Sondermann H, Bar-Sagi D, Groves JT, Kuriyan J. 2008. Membrane-dependent signal integration by the Ras activator Son of sevenless. Nat. Struct. Mol. Biol. 15:452–461. http://dx.doi.org/10.1038/nsmb.1418.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.