34
Views
19
CrossRef citations to date
0
Altmetric
Article

Allosteric Interactions by p53 mRNA Govern HDM2 E3 Ubiquitin Ligase Specificity under Different Conditions

, , , , , , , & ORCID Icon show all
Pages 2195-2205 | Received 22 Feb 2016, Accepted 20 May 2016, Published online: 17 Mar 2023

REFERENCES

  • Meek DW, Hupp TR. 2010. The regulation of MDM2 by multisite phosphorylation–opportunities for molecular-based intervention to target tumours? Semin Cancer Biol 20:19–28. http://dx.doi.org/10.1016/j.semcancer.2009.10.005.
  • Fahraeus R, Olivares-Illana V. 2014. MDM2's social network. Oncogene 33:4365–4376. http://dx.doi.org/10.1038/onc.2013.410.
  • Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH, Yuan A, Lin CW, Yang SC, Chan WK, Li KC, Hong TM, Yang PC. 2009. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol 11:694–704. http://dx.doi.org/10.1038/ncb1875.
  • Riemenschneider MJ, Buschges R, Wolter M, Reifenberger J, Bostrom J, Kraus JA, Schlegel U, Reifenberger G. 1999. Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res 59:6091–6096.
  • Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. 1992. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83. http://dx.doi.org/10.1038/358080a0.
  • Parant J, Chavez-Reyes A, Little NA, Yan W, Reinke V, Jochemsen AG, Lozano G. 2001. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet 29:92–95. http://dx.doi.org/10.1038/ng714.
  • Montes de Oca Luna R, Amelse LL, Chavez-Reyes A, Evans SC, Brugarolas J, Jacks T, Lozano G. 1997. Deletion of p21 cannot substitute for p53 loss in rescue of mdm2 null lethality. Nat Genet 16:336–337. http://dx.doi.org/10.1038/ng0897-336.
  • Montes de Oca Luna R, Wagner DS, Lozano G. 1995. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206. http://dx.doi.org/10.1038/378203a0.
  • Gu J, Kawai H, Nie L, Kitao H, Wiederschain D, Jochemsen AG, Parant J, Lozano G, Yuan ZM. 2002. Mutual dependence of MDM2 and MDMX in their functional inactivation of p53. J Biol Chem 277:19251–19254. http://dx.doi.org/10.1074/jbc.C200150200.
  • Wang X, Wang J, Jiang X. 2011. MdmX protein is essential for Mdm2 protein-mediated p53 polyubiquitination. J Biol Chem 286:23725–23734. http://dx.doi.org/10.1074/jbc.M110.213868.
  • Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, Ziv Y. 1998. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281:1674–1677.
  • Siliciano JD, Canman CE, Taya Y, Sakaguchi K, Appella E, Kastan MB. 1997. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev 11:3471–3481.
  • Shieh SY, Ikeda M, Taya Y, Prives C. 1997. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334.
  • Gannon HS, Woda BA, Jones SN. 2012. ATM phosphorylation of Mdm2 Ser394 regulates the amplitude and duration of the DNA damage response in mice. Cancer Cell 21:668–679. http://dx.doi.org/10.1016/j.ccr.2012.04.011.
  • Gajjar M, Candeias MM, Malbert-Colas L, Mazars A, Fujita J, Olivares-Illana V, Fahraeus R. 2012. The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage. Cancer Cell 21:25–35. http://dx.doi.org/10.1016/j.ccr.2011.11.016.
  • Malbert-Colas L, Ponnuswamy A, Olivares-Illana V, Tournillon AS, Naski N, Fahraeus R. 2014. HDMX folds the nascent p53 mRNA following activation by the ATM kinase. Mol Cell 54:500–511. http://dx.doi.org/10.1016/j.molcel.2014.02.035.
  • Toledo F, Krummel KA, Lee CJ, Liu CW, Rodewald LW, Tang M, Wahl GM. 2006. A mouse p53 mutant lacking the proline-rich domain rescues Mdm4 deficiency and provides insight into the Mdm2-Mdm4-p53 regulatory network. Cancer Cell 9:273–285. http://dx.doi.org/10.1016/j.ccr.2006.03.014.
  • Wade M, Wang YV, Wahl GM. 2010. The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol 20:299–309. http://dx.doi.org/10.1016/j.tcb.2010.01.009.
  • Peng Z, Mizianty MJ, Kurgan L. 2014. Genome-scale prediction of proteins with long intrinsically disordered regions. Proteins 82:145–158. http://dx.doi.org/10.1002/prot.24348.
  • Peng Z, Xue B, Kurgan L, Uversky VN. 2013. Resilience of death: intrinsic disorder in proteins involved in the programmed cell death. Cell Death Differ 20:1257–1267. http://dx.doi.org/10.1038/cdd.2013.65.
  • Terakawa T, Higo J, Takada S. 2014. Multi-scale ensemble modeling of modular proteins with intrinsically disordered linker regions: application to p53. Biophys J 107:721–729. http://dx.doi.org/10.1016/j.bpj.2014.06.026.
  • Iakoucheva LM, Radivojac P, Brown CJ, O'Connor TR, Sikes JG, Obradovic Z, Dunker AK. 2004. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32:1037–1049. http://dx.doi.org/10.1093/nar/gkh253.
  • Li X, Romero P, Rani M, Dunker AK, Obradovic Z. 1999. Predicting protein disorder for N-, C-, and internal regions. Genome Inform Ser Workshop Genome Inform 10:30–40.
  • Candeias MM, Malbert-Colas L, Powell DJ, Daskalogianni C, Maslon MM, Naski N, Bourougaa K, Calvo F, Fahraeus R. 2008. P53 mRNA controls p53 activity by managing Mdm2 functions. Nat Cell Biol 10:1098–1105. http://dx.doi.org/10.1038/ncb1770.
  • Reyes-Vivas H, Martinez-Martinez E, Mendoza-Hernandez G, Lopez-Velazquez G, Perez-Montfort R, Tuena de Gomez-Puyou M, Gomez-Puyou A. 2002. Susceptibility to proteolysis of triosephosphate isomerase from two pathogenic parasites: characterization of an enzyme with an intact and a nicked monomer. Proteins 48:580–590. http://dx.doi.org/10.1002/prot.10179.
  • De La Mora-De La Mora I, Torres-Larios A, Mendoza-Hernandez G, Enriquez-Flores S, Castillo-Villanueva A, Mendez ST, Garcia-Torres I, Torres-Arroyo A, Gomez-Manzo S, Marcial-Quino J, Oria-Hernandez J, Lopez-Velazquez G, Reyes-Vivas H. 2013. The E104D mutation increases the susceptibility of human triosephosphate isomerase to proteolysis. Asymmetric cleavage of the two monomers of the homodimeric enzyme. Biochim Biophys Acta 1834:2702–2711. http://dx.doi.org/10.1016/j.bbapap.2013.08.012.
  • Ofir-Rosenfeld Y, Boggs K, Michael D, Kastan MB, Oren M. 2008. Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26. Mol Cell 32:180–189. http://dx.doi.org/10.1016/j.molcel.2008.08.031.
  • Naski N, Gajjar M, Bourougaa K, Malbert-Colas L, Fahraeus R, Candeias MM. 2009. The p53 mRNA-Mdm2 interaction. Cell Cycle 8:31–34.
  • Poyurovsky MV, Katz C, Laptenko O, Beckerman R, Lokshin M, Ahn J, Byeon IJ, Gabizon R, Mattia M, Zupnick A, Brown LM, Friedler A, Prives C. 2010. The C terminus of p53 binds the N-terminal domain of MDM2. Nat Struct Mol Biol 17:982–989. http://dx.doi.org/10.1038/nsmb.1872.
  • Chen J, Marechal V, Levine AJ. 1993. Mapping of the p53 and mdm-2 interaction domains. Mol Cell Biol 13:4107–4114.
  • Elenbaas B, Dobbelstein M, Roth J, Shenk T, Levine AJ. 1996. The MDM2 oncoprotein binds specifically to RNA through its RING finger domain. Mol Med 2:439–451.
  • Linke K, Mace PD, Smith CA, Vaux DL, Silke J, Day CL. 2008. Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell Death Differ 15:841–848. http://dx.doi.org/10.1038/sj.cdd.4402309.
  • Okamoto K, Kashima K, Pereg Y, Ishida M, Yamazaki S, Nota A, Teunisse A, Migliorini D, Kitabayashi I, Marine JC, Prives C, Shiloh Y, Jochemsen AG, Taya Y. 2005. DNA damage-induced phosphorylation of MdmX at serine 367 activates p53 by targeting MdmX for Mdm2-dependent degradation. Mol Cell Biol 25:9608–9620. http://dx.doi.org/10.1128/MCB.25.21.9608-9620.2005.
  • Kawai H, Wiederschain D, Kitao H, Stuart J, Tsai KK, Yuan ZM. 2003. DNA damage-induced MDMX degradation is mediated by MDM2. J Biol Chem 278:45946–45953. http://dx.doi.org/10.1074/jbc.M308295200.
  • Tanimura S, Ohtsuka S, Mitsui K, Shirouzu K, Yoshimura A, Ohtsubo M. 1999. MDM2 interacts with MDMX through their RING finger domains. FEBS Lett 447:5–9.
  • Waning DL, Lehman JA, Batuello CN, Mayo LD. 2011. c-Abl phosphorylation of Mdm2 facilitates Mdm2-Mdmx complex formation. J Biol Chem 286:216–222. http://dx.doi.org/10.1074/jbc.M110.183012.
  • Wang X. 2011. p53 regulation: teamwork between RING domains of Mdm2 and MdmX. Cell Cycle 10:4225–4229. http://dx.doi.org/10.4161/cc.10.24.18662.
  • Kostic M, Matt T, Martinez-Yamout MA, Dyson HJ, Wright PE. 2006. Solution structure of the Hdm2 C2H2C4 RING, a domain critical for ubiquitination of p53. J Mol Biol 363:433–450. http://dx.doi.org/10.1016/j.jmb.2006.08.027.
  • Kawai H, Wiederschain D, Yuan ZM. 2003. Critical contribution of the MDM2 acidic domain to p53 ubiquitination. Mol Cell Biol 23:4939–4947.
  • Cheng Q, Song T, Chen L, Chen J. 2014. Autoactivation of the MDM2 E3 ligase by intramolecular interaction. Mol Cell Biol 34:2800–2810. http://dx.doi.org/10.1128/MCB.00246-14.
  • Robert X, Gouet P. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:W320–W324. http://dx.doi.org/10.1093/nar/gku316.
  • Ye YH, Rape M. 2009. Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 10:755–764. http://dx.doi.org/10.1038/nrm2780.
  • Li W, Ye Y. 2008. Polyubiquitin chains: functions, structures, and mechanisms. Cell Mol Life Sci 65:2397–2406. http://dx.doi.org/10.1007/s00018-008-8090-6.
  • Ambivero CT, Cilenti L, Main S, Zervos AS. 2014. Mulan E3 ubiquitin ligase interacts with multiple E2 conjugating enzymes and participates in mitophagy by recruiting GABARAP. Cell Signal 26:2921–2929. http://dx.doi.org/10.1016/j.cellsig.2014.09.004.
  • Bista M, Petrovich M, Fersht AR. 2013. MDMX contains an autoinhibitory sequence element. Proc Natl Acad Sci U S A 110:17814–17819. http://dx.doi.org/10.1073/pnas.1317398110.
  • Chen L, Borcherds W, Wu S, Becker A, Schonbrunn E, Daughdrill GW, Chen J. 2015. Autoinhibition of MDMX by intramolecular p53 mimicry. Proc Natl Acad Sci U S A 112:4624–4629. http://dx.doi.org/10.1073/pnas.1420833112.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.