16
Views
26
CrossRef citations to date
0
Altmetric
Article

HMGA1a Trapping of U1 snRNP at an Authentic 5′ Splice Site Induces Aberrant Exon Skipping in Sporadic Alzheimer's Disease

&
Pages 2220-2228 | Received 29 Jan 2010, Accepted 22 Feb 2010, Published online: 20 Mar 2023

REFERENCES

  • Black, D. L. 2003. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72:291–336.
  • Black, D. L., and A. L. Pinto. 1989. U5 small nuclear ribonucleoprotein: RNA structure analysis and ATP-dependent interaction with U4/U6. Mol. Cell. Biol. 9:3350–3359.
  • Buratti, E., A. Dhir, M. A. Lewandowska, and F. E. Baralle. 2007. RNA structure is a key regulatory element in pathological ATM and CFTR pseudoexon inclusion events. Nucleic Acids Res. 35:4369–4383.
  • Cartegni, L., S. L. Chew, and A. R. Krainer. 2002. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat. Rev. Genet. 3:285–298.
  • Du, H., and M. Rosbash. 2002. The U1 snRNP protein U1C recognizes the 5′ splice site in the absence of base pairing. Nature 419:86–90.
  • Fimia, G. M., D. De Cesare, and P. Sassone-Corsi. 1999. CBP-independent activation of CREM and CREB by the LIM-only protein ACT. Nature 398:165–169.
  • Guan, F., R. M. Caratozzolo, R. Goraczniak, E. S. Ho, and S. I. Gunderson. 2007. A bipartite U1 site represses U1A expression by synergizing with PIE to inhibit nuclear polyadenylation. RNA 13:2129–2140.
  • Gunderson, S. I., M. Polycarpou-Schwarz, and I. W. Mattaj. 1998. U1 snRNP inhibits pre-mRNA polyadenylation through a direct interaction between U1 70K and poly(A) polymerase. Mol. Cell 1:255–264.
  • Heinrichs, V., M. Bach, G. Winkelmann, and R. Lührmann. 1990. U1-specific protein C needed for efficient complex formation of U1 snRNP with a 5′ splice site. Science 247:69–72.
  • Ignjatovic, T., J. C. Yang, J. Butler, D. Neuhaus, and K. Nagai. 2005. Structural basis of the interaction between P-element somatic inhibitor and U1-70k essential for the alternative splicing of P-element transposase. J. Mol. Biol. 351:52–65.
  • Katayama, T., K. Imaizumi, T. Manabe, J. Hitomi, T. Kudo, and M. Tohyama. 2004. Induction of neuronal death by ER stress in Alzheimer's disease. J. Chem. Neuroanat. 28:67–78.
  • Kent, O. A., D. B. Ritchie, and A. M. Macmillan. 2005. Characterization of a U2AF-independent commitment complex (E′) in the mammalian spliceosome assembly pathway. Mol. Cell. Biol. 25:233–240.
  • Krainer, A. R., and T. Maniatis. 1985. Multiple factors including the small nuclear ribonucleoproteins U1 and U2 are necessary for pre-mRNA splicing in vitro. Cell 42:725–736.
  • Krawczak, M., J. Reiss, and D. N. Cooper. 1992. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum. Genet. 90:41–54.
  • Labourier, E., M. D. Adams, and D. C. Rio. 2001. Modulation of P-element pre-mRNA splicing by a direct interaction between PSI and U1 snRNP 70K protein. Mol. Cell 8:363–373.
  • Lewandowska, M. A., C. Stuani, A. Parvizpur, F. E. Baralle, and F. Pagani. 2005. Functional studies on the ATM intronic splicing processing element. Nucleic Acids Res. 33:4007–4015.
  • Lund, M., and J. Kjems. 2002. Defining a 5′ splice site by functional selection in the presence and absence of U1 snRNA 5′ end. RNA 8:166–179.
  • Manabe, T., T. Katayama, N. Sato, F. Gomi, J. Hitomi, T. Yanagita, T. Kudo, A. Honda, Y. Mori, S. Matsuzaki, K. Imaizumi, A. Mayeda, and M. Tohyama. 2003. Induced HMGA1a expression causes aberrant splicing of Presenilin-2 pre-mRNA in sporadic Alzheimer's disease. Cell Death Differ. 10:698–708.
  • Manabe, T., K. Ohe, T. Katayama, S. Matsuzaki, T. Yanagita, H. Okuda, Y. Bando, K. Imaizumi, R. Reeves, M. Tohyama, and A. Mayeda. 2007. HMGA1a: sequence-specific RNA-binding factor causing sporadic Alzheimer's disease-linked exon skipping of presenilin-2 pre-mRNA. Genes Cells 12:1179–1191.
  • Matlin, A. J., and M. J. Moore. 2007. Spliceosome assembly and composition. Adv. Exp. Med. Biol. 623:14–35.
  • Mayeda, A., and A. R. Krainer. 1999. Mammalian in vitro splicing assays. Methods Mol. Biol. 118:315–321.
  • Novoyatleva, T., Y. Tang, I. Rafalska, and S. Stamm. 2006. Pre-mRNA missplicing as a cause of human disease. Prog. Mol. Subcell. Biol. 44:27–46.
  • Orengo, J. P., and T. A. Cooper. 2007. Alternative splicing in disease. Adv. Exp. Med. Biol. 623:212–223.
  • Pagani, F., E. Buratti, C. Stuani, R. Bendix, T. Dork, and F. E. Baralle. 2002. A new type of mutation causes a splicing defect in ATM. Nat. Genet. 30:426–429.
  • Pomeranz Krummel, D. A., C. Oubridge, A. K. Leung, J. Li, and K. Nagai. 2009. Crystal structure of human spliceosomal U1 snRNP at 5.5 Å resolution. Nature 458:475–480.
  • Reeves, R. 2001. Molecular biology of HMGA proteins: hubs of nuclear function. Gene 277:63–81.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • Sanford, J. R., D. Longman, and J. F. Cáceres. 2003. Multiple roles of the SR protein family in splicing regulation. Prog. Mol. Subcell. Biol. 31:33–58.
  • Sato, N., O. Hori, A. Yamaguchi, J. C. Lambert, M. C. Chartier-Harlin, P. A. Robinson, A. Delacourte, A. M. Schmidt, T. Furuyama, K. Imaizumi, M. Tohyama, and T. Takagi. 1999. A novel presenilin-2 splice variant in human Alzheimer's disease brain tissue. J. Neurochem. 72:2498–2505.
  • Sato, N., K. Imaizumi, T. Manabe, M. Taniguchi, J. Hitomi, T. Katayama, T. Yoneda, T. Morihara, Y. Yasuda, T. Takagi, T. Kudo, T. Tsuda, Y. Itoyama, T. Makifuchi, P. E. Fraser, P. St George-Hyslop, and M. Tohyama. 2001. Increased production of β-amyloid and vulnerability to endoplasmic reticulum stress by an aberrant spliced form of presenilin 2. J. Biol. Chem. 276:2108–2114.
  • Sharma, S., L. A. Kohlstaedt, A. Damianov, D. C. Rio, and D. L. Black. 2008. Polypyrimidine tract binding protein controls the transition from exon definition to an intron defined spliceosome. Nat. Struct. Mol. Biol. 15:183–191.
  • Stark, H., P. Dube, R. Lührmann, and B. Kastner. 2001. Arrangement of RNA and proteins in the spliceosomal U1 small nuclear ribonucleoprotein particle. Nature 409:539–542.
  • St. George-Hyslop, P. H., and A. Petit. 2005. Molecular biology and genetics of Alzheimer's disease. C. R. Biol. 328:119–130.
  • Vilardell, J., P. Chartrand, R. H. Singer, and J. R. Warner. 2000. The odyssey of a regulated transcript. RNA 6:1773–1780.
  • Vilardell, J., and J. R. Warner. 1994. Regulation of splicing at an intermediate step in the formation of the spliceosome. Genes Dev. 8:211–220.
  • Wassarman, D. A., and J. A. Steitz. 1992. Interactions of small nuclear RNA's with precursor messenger RNA during in vitro splicing. Science 257:1918–1925.
  • Will, C. L., S. Rumpler, J. Klein Gunnewiek, W. J. van Venrooij, and R. Lührmann. 1996. In vitro reconstitution of mammalian U1 snRNPs active in splicing: the U1-C protein enhances the formation of early (E) spliceosomal complexes. Nucleic Acids Res. 24:4614–4623.
  • Wu, J. Y., and T. Maniatis. 1993. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75:1061–1070.
  • Xing, Y., and C. Lee. 2007. Relating alternative splicing to proteome complexity and genome evolution. Adv. Exp. Med. Biol. 623:36–49.
  • Zhou, H. L., and H. Lou. 2008. Repression of prespliceosome complex formation at two distinct steps by Fox-1/Fox-2 proteins. Mol. Cell. Biol. 28:5507–5516.
  • Zhu, J., and A. R. Krainer. 2000. Pre-mRNA splicing in the absence of an SR protein RS domain. Genes Dev. 14:3166–3178.
  • Zuo, P., and T. Maniatis. 1996. The splicing factor U2AF35 mediates critical protein-protein interactions in constitutive and enhancer-dependent splicing. Genes Dev. 10:1356–1368.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.