35
Views
11
CrossRef citations to date
0
Altmetric
Article

Nfkb1 Activation by the E26 Transformation-Specific Transcription Factors PU.1 and Spi-B Promotes Toll-Like Receptor-Mediated Splenic B Cell Proliferation

, , , &
Pages 1619-1632 | Received 30 Jan 2015, Accepted 23 Feb 2015, Published online: 20 Mar 2023

REFERENCES

  • Pone EJ, Zan H, Zhang J, Al-Qahtani A, Xu Z, Casali P. 2010. Toll-like receptors and B-cell receptors synergize to induce immunoglobulin class-switch DNA recombination: relevance to microbial antibody responses. Crit Rev Immunol 30:1–29. http://dx.doi.org/10.1615/CritRevImmunol.v30.i1.10.
  • Browne EP. 2012. Regulation of B-cell responses by Toll-like receptors. Immunology 136:370–379. http://dx.doi.org/10.1111/j.1365-2567.2012.03587.x.
  • Pasare C, Medzhitov R. 2005. Control of B-cell responses by Toll-like receptors. Nature 438:364–368. http://dx.doi.org/10.1038/nature04267.
  • Ruprecht CR, Lanzavecchia A. 2006. Toll-like receptor stimulation as a third signal required for activation of human naive B cells. Eur J Immunol 36:810–816. http://dx.doi.org/10.1002/eji.200535744.
  • Kasturi SP, Skountzou I, Albrecht RA, Koutsonanos D, Hua T, Nakaya HI, Ravindran R, Stewart S, Alam M, Kwissa M, Villinger F, Murthy N, Steel J, Jacob J, Hogan RJ, Garcia-Sastre A, Compans R, Pulendran B. 2011. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470:543–547. http://dx.doi.org/10.1038/nature09737.
  • Genestier L, Taillardet M, Mondiere P, Gheit H, Bella C, Defrance T. 2007. TLR agonists selectively promote terminal plasma cell differentiation of B cell subsets specialized in thymus-independent responses. J Immunol 178:7779–7786. http://dx.doi.org/10.4049/jimmunol.178.12.7779.
  • Gururajan M, Jacob J, Pulendran B. 2007. Toll-like receptor expression and responsiveness of distinct murine splenic and mucosal B-cell subsets. PLoS One 2:e863. http://dx.doi.org/10.1371/journal.pone.0000863.
  • Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G. 2002. Quantitative expression of Toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168:4531–4537. http://dx.doi.org/10.4049/jimmunol.168.9.4531.
  • Kawai T, Akira S. 2006. TLR signaling. Cell Death Differ 13:816–825. http://dx.doi.org/10.1038/sj.cdd.4401850.
  • Bekeredjian-Ding I, Jego G. 2009. Toll-like receptors—sentries in the B-cell response. Immunology 128:311–323. http://dx.doi.org/10.1111/j.1365-2567.2009.03173.x.
  • Hayden MS, Ghosh S. 2008. Shared principles in NF-kappaB signaling. Cell 132:344–362. http://dx.doi.org/10.1016/j.cell.2008.01.020.
  • Liu X, Zhan Z, Li D, Xu L, Ma F, Zhang P, Yao H, Cao X. 2011. Intracellular MHC class II molecules promote TLR-triggered innate immune responses by maintaining activation of the kinase Btk. Nat Immunol 12:416–424. http://dx.doi.org/10.1038/ni.2015.
  • DeKoter RP, Geadah M, Khoosal S, Xu LS, Thillainadesan G, Torchia J, Chin SS, Garrett-Sinha LA. 2010. Regulation of follicular B cell differentiation by the related E26 transformation-specific transcription factors PU.1, Spi-B, and Spi-C. J Immunol 185:7374–7384. http://dx.doi.org/10.4049/jimmunol.1001413.
  • Turkistany SA, DeKoter RP. 2011. The transcription factor PU.1 is a critical regulator of cellular communication in the immune system. Arch Immunol Ther Exp 59:431–440. http://dx.doi.org/10.1007/s00005-011-0147-9.
  • Su GH, Ip HS, Cobb BS, Lu MM, Chen HM, Simon MC. 1996. The Ets protein Spi-B is expressed exclusively in B cells and T cells during development. J Exp Med 184:203–214. http://dx.doi.org/10.1084/jem.184.1.203.
  • Dahl R, Ramirez-Bergeron DL, Rao S, Simon MC. 2002. Spi-B can functionally replace PU.1 in myeloid but not lymphoid development. EMBO J 21:2220–2230. http://dx.doi.org/10.1093/emboj/21.9.2220.
  • Pio F, Kodandapani R, Ni CZ, Shepard W, Klemsz M, McKercher SR, Maki RA, Ely KR. 1996. New insights on DNA recognition by ets proteins from the crystal structure of the PU.1 ETS domain-DNA complex. J Biol Chem 271:23329–23337. http://dx.doi.org/10.1074/jbc.271.38.23329.
  • Ray-Gallet D, Mao C, Tavitian A, Moreau-Gachelin F. 1995. DNA binding specificities of Spi-1/PU.1 and Spi-B transcription factors and identification of a Spi-1/Spi-B binding site in the c-fes/c-fps promoter. Oncogene 11:303–313.
  • Sokalski KM, Li SK, Welch I, Cadieux-Pitre HA, Gruca MR, DeKoter RP. 2011. Deletion of genes encoding PU.1 and Spi-B in B cells impairs differentiation and induces pre-B cell acute lymphoblastic leukemia. Blood 118:2801–2808. http://dx.doi.org/10.1182/blood-2011-02-335539.
  • Xu LS, Sokalski KM, Hotke K, Christie DA, Zarnett O, Piskorz J, Thillainadesan G, Torchia J, Dekoter RP. 2012. Regulation of B cell linker protein transcription by PU.1 and Spi-B in murine B cell acute lymphoblastic leukemia. J Immunol 189:3347–3354. http://dx.doi.org/10.4049/jimmunol.1201267.
  • Scott EW, Simon MC, Anastasi J, Singh H. 1994. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265:1573–1577. http://dx.doi.org/10.1126/science.8079170.
  • Garrett-Sinha LA, Su GH, Rao S, Kabak S, Hao Z, Clark MR, Simon MC. 1999. PU.1 and Spi-B are required for normal B cell receptor-mediated signal transduction. Immunity 10:399–408.
  • Su GH, Chen HM, Muthusamy N, Garrett-Sinha LA, Baunoch D, Tenen DG, Simon MC. 1997. Defective B cell receptor-mediated responses in mice lacking the Ets protein, Spi-B. EMBO J 16:7118–7129. http://dx.doi.org/10.1093/emboj/16.23.7118.
  • Pfaffl MW, Horgan GW, Dempfle L. 2002. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36. http://dx.doi.org/10.1093/nar/30.9.e36.
  • Cogswell PC, Scheinman RI, Baldwin AS, Jr. 1993. Promoter of the human NF-kB p50/p105 gene. J Immunol 150:2794–2804.
  • Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC, Pendergast AM, Bronson R, Aster JC, Scott ML, Baltimore D. 1998. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 92:3780–3792.
  • Sanjabi S, Williams KJ, Saccani S, Zhou L, Hoffmann A, Ghosh G, Gerondakis S, Natoli G, Smale ST. 2005. A c-Rel subdomain responsible for enhanced DNA-binding affinity and selective gene activation. Genes Dev 19:2138–2151. http://dx.doi.org/10.1101/gad.1329805.
  • Morita S, Kojima T, Kitamura T. 2000. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 7:1063–1066. http://dx.doi.org/10.1038/sj.gt.3301206.
  • Goecks J, Nekrutenko A, Taylor J. 2010. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11:R86. http://dx.doi.org/10.1186/gb-2010-11-8-r86.
  • Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J. 2010. Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol 89:19.10.1–19.10.2121. http://dx.doi.org/10.1002/0471142727.mb1910s89.
  • Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, Blankenberg D, Albert I, Taylor J, Miller W, Kent WJ, Nekrutenko A. 2005. Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15:1451–1455. http://dx.doi.org/10.1101/gr.4086505.
  • Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. http://dx.doi.org/10.1186/gb-2009-10-3-r25.
  • Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137. http://dx.doi.org/10.1186/gb-2008-9-9-r137.
  • McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM, Bejerano G. 2010. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 28:495–501. http://dx.doi.org/10.1038/nbt.1630.
  • Oliver AM, Martin F, Gartland GL, Carter RH, Kearney JF. 1997. Marginal zone B cells exhibit unique activation, proliferative and immunoglobulin secretory responses. Eur J Immunol 27:2366–2374. http://dx.doi.org/10.1002/eji.1830270935.
  • Yanaba K, Bouaziz JD, Haas KM, Poe JC, Fujimoto M, Tedder TF. 2008. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 28:639–650. http://dx.doi.org/10.1016/j.immuni.2008.03.017.
  • Kreuzaler M, Rauch M, Salzer U, Birmelin J, Rizzi M, Grimbacher B, Plebani A, Lougaris V, Quinti I, Thon V, Litzman J, Schlesier M, Warnatz K, Thiel J, Rolink AG, Eibel H. 2012. Soluble BAFF levels inversely correlate with peripheral B cell numbers and the expression of BAFF receptors. J Immunol 188:497–503. http://dx.doi.org/10.4049/jimmunol.1102321.
  • Snapper CM, Yamada H, Smoot D, Sneed R, Lees A, Mond JJ. 1993. Comparative in vitro analysis of proliferation, Ig secretion, and Ig class switching by murine marginal zone and follicular B cells. J Immunol 150:2737–2745.
  • Nagai Y, Yanagibashi T, Watanabe Y, Ikutani M, Kariyone A, Ohta S, Hirai Y, Kimoto M, Miyake K, Takatsu K. 2012. The RP105/MD-1 complex is indispensable for TLR4/MD-2-dependent proliferation and IgM-secreting plasma cell differentiation of marginal zone B cells. Int Immunol 24:389–400. http://dx.doi.org/10.1093/intimm/dxs040.
  • Himmelmann A, Thevenin C, Harrison K, Kehrl JH. 1996. Analysis of the Bruton's tyrosine kinase gene promoter reveals critical PU.1 and SP1 sites. Blood 87:1036–1044.
  • Yoon H, Boss JM. 2010. PU.1 binds to a distal regulatory element that is necessary for B cell-specific expression of CIITA. J Immunol 184:5018–5028. http://dx.doi.org/10.4049/jimmunol.1000079.
  • Hu CJ, Rao S, Ramirez-Bergeron DL, Garrett-Sinha LA, Gerondakis S, Clark MR, Simon MC. 2001. PU.1/Spi-B regulation of c-rel is essential for mature B cell survival. Immunity 15:545–555. http://dx.doi.org/10.1016/S1074-7613(01)00219-9.
  • Sha WC, Liou HC, Tuomanen EI, Baltimore D. 1995. Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses. Cell 80:321–330. http://dx.doi.org/10.1016/0092-8674(95)90415-8.
  • Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. 2010. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38:576–589. http://dx.doi.org/10.1016/j.molcel.2010.05.004.
  • Souvannavong V, Saidji N, Chaby R. 2007. Lipopolysaccharide from Salmonella enterica activates NF-kappaB through both classical and alternative pathways in primary B lymphocytes. Infect Immun 75:4998–5003. http://dx.doi.org/10.1128/IAI.00545-07.
  • Kontgen F, Grumont RJ, Strasser A, Metcalf D, Li R, Tarlinton D, Gerondakis S. 1995. Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin-2 expression. Genes Dev 9:1965–1977. http://dx.doi.org/10.1101/gad.9.16.1965.
  • Grumont RJ, Rourke IJ, O'Reilly LA, Strasser A, Miyake K, Sha W, Gerondakis S. 1998. B lymphocytes differentially use the Rel and nuclear factor kappaB1 (NF-kappaB1) transcription factors to regulate cell cycle progression and apoptosis in quiescent and mitogen-activated cells. J Exp Med 187:663–674. http://dx.doi.org/10.1084/jem.187.5.663.
  • Muller S, Sideras P, Smith CI, Xanthopoulos KG. 1996. Cell specific expression of human Bruton's agammaglobulinemia tyrosine kinase gene (Btk) is regulated by Sp1- and Spi-1/PU.1-family members. Oncogene 13:1955–1964.
  • Roger T, Miconnet I, Schiesser AL, Kai H, Miyake K, Calandra T. 2005. Critical role for Ets, AP-1 and GATA-like transcription factors in regulating mouse Toll-like receptor 4 (Tlr4) gene expression. Biochem J 387:355–365. http://dx.doi.org/10.1042/BJ20041243.
  • Schroder K, Lichtinger M, Irvine KM, Brion K, Trieu A, Ross IL, Ravasi T, Stacey KJ, Rehli M, Hume DA, Sweet MJ. 2007. PU.1 and ICSBP control constitutive and IFN-gamma-regulated Tlr9 gene expression in mouse macrophages. J Leukoc Biol 81:1577–1590. http://dx.doi.org/10.1189/jlb.0107036.
  • Pohl T, Gugasyan R, Grumont RJ, Strasser A, Metcalf D, Tarlinton D, Sha W, Baltimore D, Gerondakis S. 2002. The combined absence of NF-kappa B1 and c-Rel reveals that overlapping roles for these transcription factors in the B cell lineage are restricted to the activation and function of mature cells. Proc Natl Acad Sci U S A 99:4514–4519. http://dx.doi.org/10.1073/pnas.072071599.
  • Snapper CM, Zelazowski P, Rosas FR, Kehry MR, Tian M, Baltimore D, Sha WC. 1996. B cells from p50/NF-kappa B knockout mice have selective defects in proliferation, differentiation, germ-line CH transcription, and Ig class switching. J Immunol 156:183–191.
  • Lopez-Cabrera M, Munoz E, Blazquez MV, Ursa MA, Santis AG, Sanchez-Madrid F. 1995. Transcriptional regulation of the gene encoding the human C-type lectin leukocyte receptor AIM/CD69 and functional characterization of its tumor necrosis factor-alpha-responsive elements. J Biol Chem 270:21545–21551. http://dx.doi.org/10.1074/jbc.270.37.21545.
  • Castellanos MC, Munoz C, Montoya MC, Lara-Pezzi E, Lopez-Cabrera M, de Landazuri MO. 1997. Expression of the leukocyte early activation antigen CD69 is regulated by the transcription factor AP-1. J Immunol 159:5463–5473.
  • Bone H, Williams NA. 2001. Antigen-receptor cross-linking and lipopolysaccharide trigger distinct phosphoinositide 3-kinase-dependent pathways to NF-kappa B activation in primary B cells. Int Immunol 13:807–816. http://dx.doi.org/10.1093/intimm/13.6.807.
  • Gerondakis S, Grumont RJ, Banerjee A. 2007. Regulating B-cell activation and survival in response to TLR signals. Immunol Cell Biol 85:471–475. http://dx.doi.org/10.1038/sj.icb.7100097.
  • Pillai S, Cariappa A. 2009. The follicular versus marginal zone B lymphocyte cell fate decision. Nat Rev Immunol 9:767–777. http://dx.doi.org/10.1038/nri2656.
  • Cariappa A, Liou HC, Horwitz BH, Pillai S. 2000. Nuclear factor kappa B is required for the development of marginal zone B lymphocytes. J Exp Med 192:1175–1182. http://dx.doi.org/10.1084/jem.192.8.1175.
  • Ferguson AR, Corley RB. 2005. Accumulation of marginal zone B cells and accelerated loss of follicular dendritic cells in NF-kappaB p50-deficient mice. BMC Immunol 6:8. http://dx.doi.org/10.1186/1471-2172-6-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.