45
Views
26
CrossRef citations to date
0
Altmetric
Article

PZR Coordinates Shp2 Noonan and LEOPARD Syndrome Signaling in Zebrafish and Mice

, , , , , , , , , , , , & show all
Pages 2874-2889 | Received 26 Jan 2014, Accepted 15 May 2014, Published online: 20 Mar 2023

REFERENCES

  • Neel BG, Guo H, Pao L. 2009. SH2 domain-containing protein tyrosine phosphatases, p 707–728. In Bradshaw RA, Dennis EA (ed), Handbook in cell signaling, 2nd ed, vol 2. Elsevier, San Diego, CA.
  • Hof P, Pluskey S, Dhe-Pagganon S, Eck MJ, Shoelson SE. 1998. Crystal structure of the tyrosine phosphatase SHP-2. Cell 92:441–450. http://dx.doi.org/10.1016/S0092-8674(00)80938-1.
  • Mohi MG, Williams IR, Dearolf CR, Chan G, Kutok JL, Cohen S, Morgan K, Boulton C, Shigematsu H, Keilhack H, Akashi K, Gilliland DG, Neel BG. 2005. Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell 7:179–191. http://dx.doi.org/10.1016/j.ccr.2005.01.010.
  • Tiganis T, Bennett AM. 2007. Protein tyrosine phosphatase function: the substrate perspective. Biochem. J. 402:1–15. http://dx.doi.org/10.1042/BJ20061548.
  • Saxton TM, Henkemeyer M, Gasca S, Shen R, Rossi DJ, Shalaby F, Feng GS, Pawson T. 1997. Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. EMBO J. 16:2352–2364. http://dx.doi.org/10.1093/emboj/16.9.2352.
  • Yang W, Klaman LD, Chen B, Araki T, Harada H, Thomas SM, George EL, Neel BG. 2006. A Shp2/SFK/Ras/Erk signaling pathway controls trophoblast stem cell survival. Dev. Cell 10:317–327. http://dx.doi.org/10.1016/j.devcel.2006.01.002.
  • Perkins LA, Larsen I, Perrimon N. 1992. corkscrew encodes a putative protein tyrosine phosphatase that functions to transduce the terminal signal from the receptor tyrosine kinase torso. Cell 70:225–236. http://dx.doi.org/10.1016/0092-8674(92)90098-W.
  • Neel BG, Gu H, Pao L. 2003. The ‘Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem. Sci. 28:284–293. http://dx.doi.org/10.1016/S0968-0004(03)00091-4.
  • Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, van der Burgt I, Crosby AH, Ion A, Jeffery S, Kalidas K, Patton MA, Kucherlapati RS, Gelb BD. 2001. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat. Genet. 29:465–468. http://dx.doi.org/10.1038/ng772.
  • Tartaglia M, Gelb BD. 2005. Noonan syndrome and related disorders: genetics and pathogenesis. Annu. Rev. Genomics Hum. Genet. 6:45–68. http://dx.doi.org/10.1146/annurev.genom.6.080604.162305.
  • Jopling C, van Geemen D, den Hertog J. 2007. Shp2 knockdown and Noonan/LEOPARD mutant Shp2-induced gastrulation defects. PLoS Genet. 3:e225. http://dx.doi.org/10.1371/journal.pgen.0030225.
  • Runtuwene V, van Eekelen M, Overvoorde J, Rehmann H, Yntema HG, Nillesen WM, van Haeringen A, van der Burgt I, Burgering B, den Hertog J. 2011. Noonan syndrome gain-of-function mutations in NRAS cause zebrafish gastrulation defects. Dis. Model Mech. 4:393–399. http://dx.doi.org/10.1242/dmm.007112.
  • Tidyman WE, Rauen KA. 2008. Noonan, Costello and cardio-facio-cutaneous syndromes: dysregulation of the Ras-MAPK pathway. Expert Rev. Mol. Med. 10:e37. http://dx.doi.org/10.1017/S1462399408000902.
  • Gelb BD, Tartaglia M. 2011. RAS signaling pathway mutations and hypertrophic cardiomyopathy: getting into and out of the thick of it. J. Clin. Invest. 121:844–847. http://dx.doi.org/10.1172/JCI46399.
  • Kontaridis MI, Swanson KD, David FS, Barford D, Neel BG. 2006. PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. J. Biol. Chem. 281:6785–6792. http://dx.doi.org/10.1074/jbc.M513068200.
  • Tartaglia M, Martinelli S, Stella L, Bocchinfuso G, Flex E, Cordeddu V, Zampino G, Burgt IV, Palleschi A, Petrucci TC, Sorcini M, Schoch C, Foa R, Emanuel PD, Gelb BD. 2006. Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. Am. J. Hum. Genet. 78:279–290. http://dx.doi.org/10.1086/499925.
  • Hanna N, Montagner A, Lee WH, Miteva M, Vidal M, Vidaud M, Parfait B, Raynal P. 2006. Reduced phosphatase activity of SHP-2 in LEOPARD syndrome: consequences for PI3K binding on Gab1. FEBS Lett. 580:2477–2482. http://dx.doi.org/10.1016/j.febslet.2006.03.088.
  • Gelb BD, Tartaglia M. 2006. Noonan syndrome and related disorders: dysregulated RAS-mitogen activated protein kinase signal transduction. Hum. Mol. Genet. 15(Suppl 2):R220–R226. http://dx.doi.org/10.1093/hmg/ddl197.
  • Yu ZH, Xu J, Walls CD, Chen L, Zhang S, Zhang R, Wu L, Wang L, Liu S, Zhang ZY. 2013. Structural and mechanistic insights into LEOPARD syndrome-associated SHP2 mutations. J. Biol. Chem. 288:10472–10482. http://dx.doi.org/10.1074/jbc.M113.450023.
  • Qiu W, Wang X, Romanov V, Hutchinson A, Lin A, Ruzanov M, Battaile KP, Pai EF, Neel BG, Chirgadze NY. 2014. Structural insights into Noonan/LEOPARD syndrome-related mutants of protein-tyrosine phosphatase SHP2 (PTPN11). BMC Struct. Biol. 14:10. http://dx.doi.org/10.1186/1472-6807-14-10.
  • Zhao R, Zhao ZJ. 2000. Dissecting the interaction of SHP-2 with PZR, an immunoglobulin family protein containing immunoreceptor tyrosine-based inhibitory motifs. J. Biol. Chem. 275:5453–5459. http://dx.doi.org/10.1074/jbc.275.8.5453.
  • Zhao R, Zhao ZJ. 2003. Identification of a variant form of PZR lacking immunoreceptor tyrosine-based inhibitory motifs. Biochem. Biophys. Res. Commun. 303:1028–1033. http://dx.doi.org/10.1016/S0006-291X(03)00484-4.
  • Zhao ZJ, Zhao R. 1998. Purification and cloning of PZR, a binding protein and putative physiological substrate of tyrosine phosphatase SHP-2. J. Biol. Chem. 273:29367–29372. http://dx.doi.org/10.1074/jbc.273.45.29367.
  • Roubelakis MG, Martin-Rendon E, Tsaknakis G, Stavropoulos A, Watt SM. 2007. The murine ortholog of the SHP-2 binding molecule, PZR accelerates cell migration on fibronectin and is expressed in early embryo formation. J. Cell. Biochem. 102:955–969. http://dx.doi.org/10.1002/jcb.21334.
  • Eminaga S, Bennett AM. 2008. Noonan syndrome-associated SHP-2/PTPN11 mutants enhance SIRPalpha and PZR tyrosyl phosphorylation and promote adhesion-mediated Erk activation. J. Biol. Chem. 283:15328–15338. http://dx.doi.org/10.1074/jbc.M801382200.
  • Saxton TM, Pawson T. 1999. Morphogenetic movements at gastrulation require the SH2 tyrosine phosphatase Shp2. Proc. Natl. Acad. Sci. U. S. A. 96:3790–3795. http://dx.doi.org/10.1073/pnas.96.7.3790.
  • van der Wijk T, Blanchetot C, Overvoorde J, den Hertog J. 2003. Redox-regulated rotational coupling of receptor protein-tyrosine phosphatase alpha dimers. J. Biol. Chem. 278:13968–13974. http://dx.doi.org/10.1074/jbc.M300632200.
  • Kontaridis MI, Eminaga S, Fornaro M, Zito CI, Sordella R, Settleman J, Bennett AM. 2004. SHP-2 positively regulates myogenesis by coupling to the Rho GTPase signaling pathway. Mol. Cell. Biol. 24:5340–5352. http://dx.doi.org/10.1128/MCB.24.12.5340-5352.2004.
  • Fornaro M, Burch PM, Yang W, Zhang L, Hamilton CE, Kim JH, Neel BG, Bennett AM. 2006. SHP-2 activates signaling of the nuclear factor of activated T cells to promote skeletal muscle growth. J. Cell Biol. 175:87–97. http://dx.doi.org/10.1083/jcb.200602029.
  • Araki T, Mohi MG, Ismat FA, Bronson RT, Williams IR, Kutok JL, Yang W, Pao LI, Gilliland DG, Epstein JA, Neel BG. 2004. Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. Nat. Med. 10:849–857. http://dx.doi.org/10.1038/nm1084.
  • Westerfield M. 1995. The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 3rd ed. University of Oregon Press, Eugene, OR.
  • Thisse C, Thisse B, Schilling TF, Postlethwait JH. 1993. Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119:1203–1215.
  • van Eekelen M, Runtuwene V, Overvoorde J, den Hertog J. 2010. RPTPalpha and PTPepsilon signaling via Fyn/Yes and RhoA is essential for zebrafish convergence and extension cell movements during gastrulation. Dev. Biol. 340:626–639. http://dx.doi.org/10.1016/j.ydbio.2010.02.026.
  • Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, Nardone J, Lee K, Reeves C, Li Y, Hu Y, Tan Z, Stokes M, Sullivan L, Mitchell J, Wetzel R, Macneill J, Ren JM, Yuan J, Bakalarski CE, Villen J, Kornhauser JM, Smith B, Li D, Zhou X, Gygi SP, Gu TL, Polakiewicz RD, Rush J, Comb MJ. 2007. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131:1190–1203. http://dx.doi.org/10.1016/j.cell.2007.11.025.
  • Guo A, Villén J, Kornhauser J, Lee KA, Stokes MP, Rikova K, Possemato A, Nardone J, Innocenti G, Wetzel R, Wang Y, MacNeill J, Mitchell J, Gygi SP, Rush J, Polakiewicz RD, Comb MJ. 2008. Signaling networks assembled by oncogenic EGFR and c-Met. Proc. Natl. Acad. Sci. U. S. A. 105:692–697. http://dx.doi.org/10.1073/pnas.0707270105.
  • Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ. 2005. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol. 23:94–101. http://dx.doi.org/10.1038/nbt1046.
  • Stokes MP, Farnsworth CL, Moritz A, Silva JC, Jia X, Lee KA, Guo A, Polakiewicz RD, Comb MJ. 2012. PTMScan direct: identification and quantification of peptides from critical signaling proteins by immunoaffinity enrichment coupled with LC-MS/MS. Mol. Cell. Proteomics 11:187–201. http://dx.doi.org/10.1074/mcp.M111.015883.
  • Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP. 2006. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat. Biotechnol. 24:1285–1292. http://dx.doi.org/10.1038/nbt1240.
  • Elias JE, Gygi SP. 2007. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4:207–214. http://dx.doi.org/10.1038/nmeth1019.
  • Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME, Gygi SP. 2010. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143:1174–1189. http://dx.doi.org/10.1016/j.cell.2010.12.001.
  • Yates JRIII, Eng JK, McCormack AL, Schieltz D. 1995. Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal. Chem. 67:1426–1436. http://dx.doi.org/10.1021/ac00104a020.
  • Jopling C, den Hertog J. 2005. Fyn/Yes and non-canonical Wnt signalling converge on RhoA in vertebrate gastrulation cell movements. EMBO Rep. 6:426–431. http://dx.doi.org/10.1038/sj.embor.7400386.
  • Robu ME, Larson JD, Nasevicius A, Beiraghi S, Brenner C, Farber SA, Ekker SC. 2007. p53 activation by knockdown technologies. PLoS Genet. 3:e78. http://dx.doi.org/10.1371/journal.pgen.0030078.
  • Stewart RA, Sanda T, Widlund HR, Zhu S, Swanson KD, Hurley AD, Bentires-Alj M, Fisher DE, Kontaridis MI, Look AT, Neel BG. 2010. Phosphatase-dependent and -independent functions of Shp2 in neural crest cells underlie LEOPARD syndrome pathogenesis. Dev. Cell 18:750–762. http://dx.doi.org/10.1016/j.devcel.2010.03.009.
  • Zhao R, Guerrah A, Tang H, Zhao ZJ. 2002. Cell surface glycoprotein PZR is a major mediator of concanavalin A-induced cell signaling. J. Biol. Chem. 277:7882–7888. http://dx.doi.org/10.1074/jbc.M111914200.
  • Marin TM, Keith K, Davies B, Conner DA, Guha P, Kalaitzidis D, Wu X, Lauriol J, Wang B, Bauer M, Bronson R, Franchini KG, Neel BG, Kontaridis MI. 2011. Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. J. Clin. Invest. 121:1026–1043. http://dx.doi.org/10.1172/JCI44972.
  • Kusano K, Thomas TN, Fujiwara K. 2008. Phosphorylation and localization of protein-zero related (PZR) in cultured endothelial cells. Endothelium 15:127–136. http://dx.doi.org/10.1080/10623320802125250.
  • Wickstrom SA, Radovanac K, Fassler R. 2011. Genetic analyses of integrin signaling. Cold Spring Harb. Perspect. Biol. 3:a005116. http://dx.doi.org/10.1101/cshperspect.a005116.
  • Zannettino AC, Roubelakis M, Welldon KJ, Jackson DE, Simmons PJ, Bendall LJ, Henniker A, Harrison KL, Niutta S, Bradstock KF, Watt SM. 2003. Novel mesenchymal and haematopoietic cell isoforms of the SHP-2 docking receptor, PZR: identification, molecular cloning and effects on cell migration. Biochem. J. 370:537–549. http://dx.doi.org/10.1042/BJ20020935.
  • Bocchinfuso G, Stella L, Martinelli S, Flex E, Carta C, Pantaleoni F, Pispisa B, Venanzi M, Tartaglia M, Palleschi A. 2007. Structural and functional effects of disease-causing amino acid substitutions affecting residues Ala72 and Glu76 of the protein tyrosine phosphatase SHP-2. Proteins 66:963–974. http://dx.doi.org/10.1002/prot.21050.
  • Walter AO, Peng ZY, Cartwright CA. 1999. The Shp-2 tyrosine phosphatase activates the Src tyrosine kinase by a non-enzymatic mechanism. Oncogene 18:1911–1920. http://dx.doi.org/10.1038/sj.onc.1202513.
  • Peng Z-Y, Cartwright CA. 1995. Regulation of the Src tyrosine kinase and Syp tyrosine phosphatase by their cellular association. Oncogene 11:1955–1962.
  • Zhang SQ, Yang W, Kontaridis MI, Bivona TG, Wen G, Araki T, Luo J, Thompson JA, Schraven BL, Philips MR, Neel BG. 2004. Shp2 regulates SRC family kinase activity and ras/erk activation by controlling csk recruitment. Mol. Cell 13:341–355. http://dx.doi.org/10.1016/S1097-2765(04)00050-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.