82
Views
28
CrossRef citations to date
0
Altmetric
Article

Epithelial Xbp1 Is Required for Cellular Proliferation and Differentiation during Mammary Gland Development

, , , , , , , & show all
Pages 1543-1556 | Received 05 Feb 2015, Accepted 11 Feb 2015, Published online: 20 Mar 2023

REFERENCES

  • Watson CJ, Khaled WT. 2008. Mammary development in the embryo and adult: a journey of morphogenesis and commitment. Development 135:995–1003. http://dx.doi.org/10.1242/dev.005439.
  • Le Parc A, Leonil J, Chanat E. 2010. AlphaS1-casein, which is essential for efficient ER-to-Golgi casein transport, is also present in a tightly membrane-associated form. BMC Cell Biol 11:65. http://dx.doi.org/10.1186/1471-2121-11-65.
  • Bussard KM, Smith GH. 2011. The mammary gland microenvironment directs progenitor cell fate in vivo. Int J Cell Biol 2011:451676. http://dx.doi.org/10.1155/2011/451676.
  • Topper YJ, Freeman CS. 1980. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev 60:1049–1106.
  • Forsyth IA. 1986. Variation among species in the endocrine control of mammary growth and function: the roles of prolactin, growth hormone, and placental lactogen. J Dairy Sci 69:886–903. http://dx.doi.org/10.3168/jds.S0022-0302(86)80479-9.
  • Robinson GW, McKnight RA, Smith GH, Hennighausen L. 1995. Mammary epithelial cells undergo secretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. Development 121:2079–2090.
  • Hennighausen L, Robinson GW. 1998. Think globally, act locally: the making of a mouse mammary gland. Genes Dev 12:449–455. http://dx.doi.org/10.1101/gad.12.4.449.
  • Hennighausen L, Robinson GW. 2005. Information networks in the mammary gland. Nat Rev Mol Cell Biol 6:715–725. http://dx.doi.org/10.1038/nrm1714.
  • Glimcher LH. 2010. XBP1: the last two decades. Ann Rheum Dis 69(Suppl 1):i67–i71. http://dx.doi.org/10.1136/ard.2009.119388.
  • Gregor MF, Misch ES, Yang L, Hummasti S, Inouye KE, Lee AH, Bierie B, Hotamisligil GS. 2013. The role of adipocyte XBP1 in metabolic regulation during lactation. Cell Rep 3:1430–1439. http://dx.doi.org/10.1016/j.celrep.2013.03.042.
  • Lee AH, Chu GC, Iwakoshi NN, Glimcher LH. 2005. XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands. EMBO J 24:4368–4380. http://dx.doi.org/10.1038/sj.emboj.7600903.
  • Lee AH, Heidtman K, Hotamisligil GS, Glimcher LH. 2011. Dual and opposing roles of the unfolded protein response regulated by IRE1alpha and XBP1 in proinsulin processing and insulin secretion. Proc Natl Acad Sci U S A 108:8885–8890. http://dx.doi.org/10.1073/pnas.1105564108.
  • Bobrovnikova-Marjon E, Hatzivassiliou G, Grigoriadou C, Romero M, Cavener DR, Thompson CB, Diehl JA. 2008. PERK-dependent regulation of lipogenesis during mouse mammary gland development and adipocyte differentiation. Proc Natl Acad Sci U S A 105:16314–16319. http://dx.doi.org/10.1073/pnas.0808517105.
  • Hernandez-Gea V, Hilscher M, Rozenfeld R, Lim MP, Nieto N, Werner S, Devi LA, Friedman SL. 2013. Endoplasmic reticulum stress induces fibrogenic activity in hepatic stellate cells through autophagy. J Hepatol 59:98–104. http://dx.doi.org/10.1016/j.jhep.2013.02.016.
  • Yang L, Jung Y, Omenetti A, Witek RP, Choi S, Vandongen HM, Huang J, Alpini GD, Diehl AM. 2008. Fate-mapping evidence that hepatic stellate cells are epithelial progenitors in adult mouse livers. Stem Cells 26:2104–2113. http://dx.doi.org/10.1634/stemcells.2008-0115.
  • Scholten D, Osterreicher CH, Scholten A, Iwaisako K, Gu G, Brenner DA, Kisseleva T. 2010. Genetic labeling does not detect epithelial-to-mesenchymal transition of cholangiocytes in liver fibrosis in mice. Gastroenterology 139:987–998. http://dx.doi.org/10.1053/j.gastro.2010.05.005.
  • Hernandez-Gea V, Ghiassi-Nejad Z, Rozenfeld R, Gordon R, Fiel MI, Yue Z, Czaja MJ, Friedman SL. 2012. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142:938–946. http://dx.doi.org/10.1053/j.gastro.2011.12.044.
  • Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh DF, Bolden JE, Zhao Z, Thapar V, Joyce JA, Krizhanovsky V, Lowe SW. 2013. Non-cell-autonomous tumor suppression by p53. Cell 153:449–460. http://dx.doi.org/10.1016/j.cell.2013.03.020.
  • Lee AH, Scapa EF, Cohen DE, Glimcher LH. 2008. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320:1492–1496. http://dx.doi.org/10.1126/science.1158042.
  • Wessels A, van den Hoff MJ, Adamo RF, Phelps AL, Lockhart MM, Sauls K, Briggs LE, Norris RA, van Wijk B, Perez-Pomares JM, Dettman RW, Burch JB. 2012. Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Dev Biol 366:111–124. http://dx.doi.org/10.1016/j.ydbio.2012.04.020.
  • Chen F, Capecchi MR. 1999. Paralogous mouse Hox genes, Hoxa9, Hoxb9, and Hoxd9, function together to control development of the mammary gland in response to pregnancy. Proc Natl Acad Sci U S A 96:541–546. http://dx.doi.org/10.1073/pnas.96.2.541.
  • Wen HC, Avivar-Valderas A, Sosa MS, Girnius N, Farias EF, Davis RJ, Aguirre-Ghiso JA. 2011. p38alpha signaling induces anoikis and lumen formation during mammary morphogenesis. Sci Signal 4:ra34. http://dx.doi.org/10.1126/scisignal.2001684.
  • Smalley MJ. 2010. Isolation, culture and analysis of mouse mammary epithelial cells. Methods Mol Biol 633:139–170. http://dx.doi.org/10.1007/978-1-59745-019-5_11.
  • Dunphy KA, Tao L, Jerry DJ. 2010. Mammary epithelial transplant procedure. J Vis Exp 2010:1849. http://dx.doi.org/10.3791/1849.
  • Anderson SM, Rudolph MC, McManaman JL, Neville MC. 2007. Key stages in mammary gland development. Secretory activation in the mammary gland: it's not just about milk protein synthesis! Breast Cancer Res 9:204. http://dx.doi.org/10.1186/bcr1653.
  • Boutinaud M, Guinard-Flamenta J, Jammes H. 2004. The number and activity of mammary epithelial cells, determining factors for milk production. Reprod Nutr Dev 44:499–508. http://dx.doi.org/10.1051/rnd:2004054.
  • Reimold AM, Etkin A, Clauss I, Perkins A, Friend DS, Zhang J, Horton HF, Scott A, Orkin SH, Byrne MC, Grusby MJ, Glimcher LH. 2000. An essential role in liver development for transcription factor XBP-1. Genes Dev 14:152–157. http://dx.doi.org/10.1101/gad.14.2.152.
  • Sequeira SJ, Ranganathan AC, Adam AP, Iglesias BV, Farias EF, Aguirre-Ghiso JA. 2007. Inhibition of proliferation by PERK regulates mammary acinar morphogenesis and tumor formation. PLoS One 2:e615. http://dx.doi.org/10.1371/journal.pone.0000615.
  • Wang XZ, Ron D. 1996. Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP kinase. Science 272:1347–1349.
  • Kolb AF, Huber RC, Lillico SG, Carlisle A, Robinson CJ, Neil C, Petrie L, Sorensen DB, Olsson IA, Whitelaw CB. 2011. Milk lacking alpha-casein leads to permanent reduction in body size in mice. PLoS One 6:e21775. http://dx.doi.org/10.1371/journal.pone.0021775.
  • Howarth DL, Lindtner C, Vacaru AM, Sachidanandam R, Tsedensodnom O, Vasilkova T, Buettner C, Sadler KC. 2014. Activating transcription factor 6 is necessary and sufficient for alcoholic fatty liver disease in zebrafish. PLoS Genet 10:e1004335. http://dx.doi.org/10.1371/journal.pgen.1004335.
  • Basseri S, Austin RC. 2012. Endoplasmic reticulum stress and lipid metabolism: mechanisms and therapeutic potential. Biochem Res Int 2012:841362. http://dx.doi.org/10.1155/2012/841362.
  • Volmer R, Ron D. 2014. Lipid-dependent regulation of the unfolded protein response. Curr Opin Cell Biol 33C:67–73. http://dx.doi.org/10.1016/j.ceb.2014.12.002.
  • Ali S, Ali S. 1998. Prolactin receptor regulates Stat5 tyrosine phosphorylation and nuclear translocation by two separate pathways. J Biol Chem 273:7709–7716.
  • Long W, Wagner KU, Lloyd KC, Binart N, Shillingford JM, Hennighausen L, Jones FE. 2003. Impaired differentiation and lactational failure of Erbb4-deficient mammary glands identify ERBB4 as an obligate mediator of STAT5. Development 130:5257–5268. http://dx.doi.org/10.1242/dev.00715.
  • Cui Y, Riedlinger G, Miyoshi K, Tang W, Li C, Deng CX, Robinson GW, Hennighausen L. 2004. Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol Cell Biol 24:8037–8047. http://dx.doi.org/10.1128/MCB.24.18.8037-8047.2004.
  • Hennighausen L, Robinson GW. 2008. Interpretation of cytokine signaling through the transcription factors STAT5A and STAT5B. Genes Dev 22:711–721. http://dx.doi.org/10.1101/gad.1643908.
  • Ormandy CJ, Binart N, Kelly PA. 1997. Mammary gland development in prolactin receptor knockout mice. J Mammary Gland Biol Neoplasia 2:355–364.
  • Ormandy CJ, Camus A, Barra J, Damotte D, Lucas B, Buteau H, Edery M, Brousse N, Babinet C, Binart N, Kelly PA. 1997. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev 11:167–178.
  • Shillingford JM, Miyoshi K, Robinson GW, Grimm SL, Rosen JM, Neubauer H, Pfeffer K, Hennighausen L. 2002. Jak2 is an essential tyrosine kinase involved in pregnancy-mediated development of mammary secretory epithelium. Mol Endocrinol 16:563–570. http://dx.doi.org/10.1210/mend.16.3.0805.
  • Jones FE, Welte T, Fu XY, Stern DF. 1999. ErbB4 signaling in the mammary gland is required for lobuloalveolar development and Stat5 activation during lactation. J Cell Biol 147:77–88.
  • Tidcombe H, Jackson-Fisher A, Mathers K, Stern DF, Gassmann M, Golding JP. 2003. Neural and mammary gland defects in ErbB4 knockout mice genetically rescued from embryonic lethality. Proc Natl Acad Sci U S A 100:8281–8286. http://dx.doi.org/10.1073/pnas.1436402100.
  • Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Hennighausen L. 1997. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev 11:179–186.
  • Miyoshi K, Shillingford JM, Smith GH, Grimm SL, Wagner KU, Oka T, Rosen JM, Robinson GW, Hennighausen L. 2001. Signal transducer and activator of transcription (Stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium. J Cell Biol 155:531–542. http://dx.doi.org/10.1083/jcb.200107065.
  • Wiseman BS, Werb Z. 2002. Stromal effects on mammary gland development and breast cancer. Science 296:1046–1049. http://dx.doi.org/10.1126/science.1067431.
  • Tanjore H, Lawson WE, Blackwell TS. 2013. Endoplasmic reticulum stress as a pro-fibrotic stimulus. Biochim Biophys Acta 1832:940–947. http://dx.doi.org/10.1016/j.bbadis.2012.11.011.
  • Vacaru AM, Di Narzo AF, Howarth DL, Tsedensodnom O, Imrie D, Cinaroglu A, Amin S, Hao K, Sadler KC. 2014. Molecularly defined unfolded protein response subclasses have distinct correlations with fatty liver disease in zebrafish. Dis Model Mech 7:823–835. http://dx.doi.org/10.1242/dmm.014472.
  • Naylor MJ, Lockefeer JA, Horseman ND, Ormandy CJ. 2003. Prolactin regulates mammary epithelial cell proliferation via autocrine/paracrine mechanism. Endocrine 20:111–114. http://dx.doi.org/10.1385/ENDO:20:1-2:111.
  • Yang L, Carlson SG, McBurney D, Horton WE, Jr. 2005. Multiple signals induce endoplasmic reticulum stress in both primary and immortalized chondrocytes resulting in loss of differentiation, impaired cell growth, and apoptosis. J Biol Chem 280:31156–31165. http://dx.doi.org/10.1074/jbc.M501069200.
  • Zu K, Bihani T, Lin A, Park YM, Mori K, Ip C. 2006. Enhanced selenium effect on growth arrest by BiP/GRP78 knockdown in p53-null human prostate cancer cells. Oncogene 25:546–554. http://dx.doi.org/10.1038/sj.onc.1209071.
  • Bobrovnikova-Marjon E, Grigoriadou C, Pytel D, Zhang F, Ye J, Koumenis C, Cavener D, Diehl JA. 2010. PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage. Oncogene 29:3881–3895. http://dx.doi.org/10.1038/onc.2010.153.
  • Xu T, Yang L, Yan C, Wang X, Huang P, Zhao F, Zhao L, Zhang M, Jia W, Wang X, Liu Y. 2014. The IRE1alpha-XBP1 pathway regulates metabolic stress-induced compensatory proliferation of pancreatic beta-cells. Cell Res 24:1137–1140. http://dx.doi.org/10.1038/cr.2014.55.
  • Tabas I, Ron D. 2011. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13:184–190. http://dx.doi.org/10.1038/ncb0311-184.
  • Schroder M, Kaufman RJ. 2005. The mammalian unfolded protein response. Annu Rev Biochem 74:739–789. http://dx.doi.org/10.1146/annurev.biochem.73.011303.074134.
  • Zeng L, Zampetaki A, Margariti A, Pepe AE, Alam S, Martin D, Xiao Q, Wang W, Jin ZG, Cockerill G, Mori K, Li YS, Hu Y, Chien S, Xu Q. 2009. Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow. Proc Natl Acad Sci U S A 106:8326–8331. http://dx.doi.org/10.1073/pnas.0903197106.
  • Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M, Lim E, Tam WL, Ni M, Chen Y, Mai J, Shen H, Hu DZ, Adoro S, Hu B, Song M, Tan C, Landis MD, Ferrari M, Shin SJ, Brown M, Chang JC, Liu XS, Glimcher LH. 2014. XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature 508:103–107. http://dx.doi.org/10.1038/nature13119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.