67
Views
10
CrossRef citations to date
0
Altmetric
Article

Microglia-Induced Activation of Noncanonical Wnt Signaling Aggravates Neurodegeneration in Demyelinating Disorders

, &
Pages 2728-2741 | Received 07 Mar 2016, Accepted 11 Aug 2016, Published online: 17 Mar 2023

REFERENCES

  • Nave KA, Werner HB. 2014. Myelination of the nervous system: mechanisms and functions. Annu Rev Cell Dev Biol 30:503–533. http://dx.doi.org/10.1146/annurev-cellbio-100913-013101.
  • Iglesias A, Bauer J, Litzenburger T, Schubart A, Linington C. 2001. T- and B-cell responses to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis and multiple sclerosis. Glia 36:220–234. http://dx.doi.org/10.1002/glia.1111.
  • Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KH. 2010. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol 162:1–11. http://dx.doi.org/10.1111/j.1365-2249.2010.04143.x.
  • Nakahara J, Aiso S, Suzuki N. 2010. Autoimmune versus oligodendrogliopathy: the pathogenesis of multiple sclerosis. Arch Immunol Ther Exp (Warsz) 58:325–333. http://dx.doi.org/10.1007/s00005-010-0094-x.
  • Glezer I, Simard AR, Rivest S. 2007. Neuroprotective role of the innate immune system by microglia. Neuroscience 147:867–883. http://dx.doi.org/10.1016/j.neuroscience.2007.02.055.
  • Tang Y, Le W. 20 Jan 2015s. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol. http://dx.doi.org/10.1007/s12035-014-9070-5.
  • Guo F, Lang J, Sohn J, Hammond E, Chang M, Pleasure D. 2015. Canonical Wnt signaling in the oligodendroglial lineage—puzzles remain. Glia 63:1671–1693. http://dx.doi.org/10.1002/glia.22813.
  • Fancy SP, Baranzini SE, Zhao C, Yuk DI, Irvine KA, Kaing S, Sanai N, Franklin RJ, Rowitch DH. 2009. Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23:1571–1585. http://dx.doi.org/10.1101/gad.1806309.
  • Gordon MD, Nusse R. 2006. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 281:22429–22433. http://dx.doi.org/10.1074/jbc.R600015200.
  • Kikuchi A, Yamamoto H, Sato A, Matsumoto S. 2011. New insights into the mechanism of Wnt signaling pathway activation. Int Rev Cell Mol Biol 291:21–71. http://dx.doi.org/10.1016/B978-0-12-386035-4.00002-1.
  • Pukrop T, Binder C. 2008. The complex pathways of Wnt5a in cancer progression. J Mol Med (Berl) 86:259–266. http://dx.doi.org/10.1007/s00109-007-0266-2.
  • Komiya Y, Habas R. 2008. Wnt signal transduction pathways. Organogenesis 4:68–75. http://dx.doi.org/10.4161/org.4.2.5851.
  • Green JL, Kuntz SG, Sternberg PW. 2008. Ror receptor tyrosine kinases: orphans no more. Trends Cell Biol 18:536–544. http://dx.doi.org/10.1016/j.tcb.2008.08.006.
  • Mikels A, Minami Y, Nusse R. 2009. Ror2 receptor requires tyrosine kinase activity to mediate Wnt5A signaling. J Biol Chem 284:30167–30176. http://dx.doi.org/10.1074/jbc.M109.041715.
  • Schambony A, Wedlich D. 2007. Wnt-5A/Ror2 regulate expression of XPAPC through an alternative noncanonical signaling pathway. Dev Cell 12:779–792. http://dx.doi.org/10.1016/j.devcel.2007.02.016.
  • Oishi I, Suzuki H, Onishi N, Takada R, Kani S, Ohkawara B, Koshida I, Suzuki K, Yamada G, Schwabe GC, Mundlos S, Shibuya H, Takada S, Minami Y. 2003. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/ JNK signalling pathway. Genes Cells 8:645–654. http://dx.doi.org/10.1046/j.1365-2443.2003.00662.x.
  • DeChiara TM, Kimble RB, Poueymirou WT, Rojas J, Masiakowski P, Valenzuela DM, Yancopoulos GD. 2000. Ror2, encoding a receptor-like tyrosine kinase, is required for cartilage and growth plate development. Nat Genet 24:271–274. http://dx.doi.org/10.1038/73488.
  • Takeuchi S, Takeda K, Oishi I, Nomi M, Ikeya M, Itoh K, Tamura S, Ueda T, Hatta T, Otani H, Terashima T, Takada S, Yamamura H, Akira S, Minami Y. 2000. Mouse Ror2 receptor tyrosine kinase is required for the heart development and limb formation. Genes Cells 5:71–78. http://dx.doi.org/10.1046/j.1365-2443.2000.00300.x.
  • Kagawa T, Ikenaka K, Inoue Y, Kuriyama S, Tsujii T, Nakao J, Nakajima K, Aruga J, Okano H, Mikoshiba K. 1994. Glial cell degeneration and hypomyelination caused by overexpression of myelin proteolipid protein gene. Neuron 13:427–442. http://dx.doi.org/10.1016/0896-6273(94)90358-1.
  • Tanaka KF, Ahmari SE, Leonardo ED, Richardson-Jones JW, Budreck EC, Scheiffele P, Sugio S, Inamura N, Ikenaka K, Hen R. 2010. Flexible accelerated STOP tetracycline operator-knockin (FAST): a versatile and efficient new gene modulating system. Biol Psychiatry 67:770–773. http://dx.doi.org/10.1016/j.biopsych.2009.12.020.
  • Bakker ER, Raghoebir L, Franken PF, Helvensteijn W, van Gurp L, Meijlink F, van der Valk MA, Rottier RJ, Kuipers EJ, van Veelen W, Smits R. 2012. Induced Wnt5a expression perturbs embryonic outgrowth and intestinal elongation, but is well-tolerated in adult mice. Dev Biol 369:91–100. http://dx.doi.org/10.1016/j.ydbio.2012.06.007.
  • Jiang XY, Fu SL, Nie BM, Li Y, Lin L, Yin L, Wang YX, Lu PH, Xu XM. 2006. Methods for isolating highly-enriched embryonic spinal cord neurons: a comparison between enzymatic and mechanical dissociations. J Neurosci Methods 158:13–18. http://dx.doi.org/10.1016/j.jneumeth.2006.05.014.
  • Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimura K, Sakamoto K, Hirakawa A, Takeuchi H, Suzumura A, Ishiguro N, Kadomatsu K. 2013. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis 4:e525. http://dx.doi.org/10.1038/cddis.2013.54.
  • Shimizu T, Kagawa T, Wada T, Muroyama Y, Takada S, Ikenaka K. 2005. Wnt signaling controls the timing of oligodendrocyte development in the spinal cord. Dev Biol 282:397–410. http://dx.doi.org/10.1016/j.ydbio.2005.03.020.
  • Shimizu T, Kagawa T, Inoue T, Nonaka A, Takada S, Aburatani H, Taga T. 2008. Stabilized beta-catenin functions through TCF/LEF proteins and the Notch/RBP-Jkappa complex to promote proliferation and suppress differentiation of neural precursor cells. Mol Cell Biol 28:7427–7441. http://dx.doi.org/10.1128/MCB.01962-07.
  • Torashima T, Okoyama S, Nishizaki T, Hirai H. 2006. In vivo transduction of murine cerebellar Purkinje cells by HIV-derived lentiviral vectors. Brain Res 1082:11–22. http://dx.doi.org/10.1016/j.brainres.2006.01.104.
  • Dong YL, Fukazawa Y, Wang W, Kamasawa N, Shigemoto R. 2010. Differential postsynaptic compartments in the laterocapsular division of the central nucleus of amygdala for afferents from the parabrachial nucleus and the basolateral nucleus in the rat. J Comp Neurol 518:4771–4791. http://dx.doi.org/10.1002/cne.22487.
  • Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F. 2002. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22:1172–1183. http://dx.doi.org/10.1128/MCB.22.4.1172-1183.2002.
  • Lustig B, Jerchow B, Sachs M, Weiler S, Pietsch T, Karsten U, van de Wetering M, Clevers H, Schlag PM, Birchmeier W, Behrens J. 2002. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 22:1184–1193. http://dx.doi.org/10.1128/MCB.22.4.1184-1193.2002.
  • Yrjänheikki J, Keinanen R, Pellikka M, Hokfelt T, Koistinaho J. 1998. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci U S A 95:15769–15774. http://dx.doi.org/10.1073/pnas.95.26.15769.
  • Hanisch UK, Kettenmann H. 2007. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394. http://dx.doi.org/10.1038/nn1997.
  • Dilger RN, Johnson RW. 2008. Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system. J Leukoc Biol 84:932–939. http://dx.doi.org/10.1189/jlb.0208108.
  • Zhong LM, Zong Y, Sun L, Guo JZ, Zhang W, He Y, Song R, Wang WM, Xiao CJ, Lu D. 2012. Resveratrol inhibits inflammatory responses via the mammalian target of rapamycin signaling pathway in cultured LPS-stimulated microglial cells. PLoS One 7:e32195. http://dx.doi.org/10.1371/journal.pone.0032195.
  • Nayak D, Huo Y, Kwang WX, Pushparaj PN, Kumar SD, Ling EA, Dheen ST. 2010. Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience 166:132–144. http://dx.doi.org/10.1016/j.neuroscience.2009.12.020.
  • Pan XD, Chen XC, Zhu YG, Zhang J, Huang TW, Chen LM, Ye QY, Huang HP. 2008. Neuroprotective role of tripchlorolide on inflammatory neurotoxicity induced by lipopolysaccharide-activated microglia. Biochem Pharmacol 76:362–372. http://dx.doi.org/10.1016/j.bcp.2008.05.018.
  • Takenouchi T, Iwamaru Y, Sugama S, Sato M, Hashimoto M, Kitani H. 2008. Lysophospholipids and ATP mutually suppress maturation and release of IL-1 beta in mouse microglial cells using a Rho-dependent pathway. J Immunol 180:7827–7839. http://dx.doi.org/10.4049/jimmunol.180.12.7827.
  • Starossom SC, Mascanfroni ID, Imitola J, Cao L, Raddassi K, Hernandez SF, Bassil R, Croci DO, Cerliani JP, Delacour D, Wang Y, Elyaman W, Khoury SJ, Rabinovich GA. 2012. Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity 37:249–263. http://dx.doi.org/10.1016/j.immuni.2012.05.023.
  • Lee DH, Kubera K, Rosenthal B, Kaltschmidt B, Kaltschmidt C, Gold R, Linker RA. 2012. Neuronal NF-κB ablation does not influence neuro-axonal degeneration in experimental autoimmune demyelination. J Neuroimmunol 246:38–42. http://dx.doi.org/10.1016/j.jneuroim.2012.03.005.
  • Coffey ET. 2014. Nuclear and cytosolic JNK signalling in neurons. Nat Rev Neurosci 15:285–299. http://dx.doi.org/10.1038/nrn3729.
  • De Calisto J, Araya C, Marchant L, Riaz CF, Mayor R. 2005. Essential role of non-canonical Wnt signalling in neural crest migration. Development 132:2587–2597. http://dx.doi.org/10.1242/dev.01857.
  • Yamanaka H, Nishida E. 2007. Wnt11 stimulation induces polarized accumulation of Dishevelled at apical adherens junctions through Frizzled7. Genes Cells 12:961–967. http://dx.doi.org/10.1111/j.1365-2443.2007.01106.x.
  • Nishita M, Itsukushima S, Nomachi A, Endo M, Wang Z, Inaba D, Qiao S, Takada S, Kikuchi A, Minami Y. 2010. Ror2/Frizzled complex mediates Wnt5a-induced AP-1 activation by regulating Dishevelled polymerization. Mol Cell Biol 30:3610–3619. http://dx.doi.org/10.1128/MCB.00177-10.
  • Qu C, Li W, Shao Q, Dwyer T, Huang H, Yang T, Liu G. 2013. c-Jun N-terminal kinase 1 (JNK1) is required for coordination of netrin signaling in axon guidance. J Biol Chem 288:1883–1895. http://dx.doi.org/10.1074/jbc.M112.417881.
  • Ikeya M, Lee SM, Johnson JE, McMahon AP, Takada S. 1997. Wnt signalling required for expansion of neural crest and CNS progenitors. Nature 389:966–970. http://dx.doi.org/10.1038/40146.
  • Conlee JW, Shapiro SM, Churn SB. 2000. Expression of the alpha and beta subunits of Ca2+/calmodulin kinase II in the cerebellum of jaundiced Gunn rats during development: a quantitative light microscopic analysis. Acta Neuropathol 99:393–401. http://dx.doi.org/10.1007/s004010051141.
  • Lund LM, McQuarrie IG. 1997. Calcium/calmodulin-dependent protein kinase II expression in motor neurons: effect of axotomy. J Neurobiol 33:796–810. http://dx.doi.org/10.1002/(SICI)1097-4695(19971120)33:6<796::AID-NEU7>3.0.CO;2-4.
  • Ma J, Tanaka KF, Shimizu T, Bernard CCA, Kakita A, Takahashi H, Pfeiffer SE, Ikenaka K. 2011. Microglial cystatin F expression is a sensitive indicator for ongoing demyelination with concurrent remyelination. J Neurosci Res 89:639–649. http://dx.doi.org/10.1002/jnr.22567.
  • Tanaka H, Ma J, Tanaka KF, Takao K, Komada M, Tanda K, Suzuki A, Ishibashi T, Baba H, Isa T, Shigemoto R, Ono K, Miyakawa T, Ikenaka K. 2009. Mice with altered myelin proteolipid protein gene expression display cognitive deficits accompanied by abnormal neuron-glia interactions and decreased conduction velocities. J Neurosci 29:8363–8371. http://dx.doi.org/10.1523/JNEUROSCI.3216-08.2009.
  • Tanaka H, Ikenaka K, Isa T. 2006. Electrophysiological abnormalities precede apparent histological demyelination in the central nervous system of mice overexpressing proteolipid protein. J Neurosci Res 84:1206–1216. http://dx.doi.org/10.1002/jnr.21018.
  • Szymanski CR, Chiha W, Morellini N, Cummins N, Bartlett CA, O'Hare Doig RL, Savigni DL, Payne SC, Harvey AR, Dunlop SA, Fitzgerald M. 2013. Paranode abnormalities and oxidative stress in optic nerve vulnerable to secondary degeneration: modulation by 670 nm light treatment. PLoS One 8:e66448. http://dx.doi.org/10.1371/journal.pone.0066448.
  • O'Hare Doig RL, Bartlett CA, Maghzal GJ, Lam M, Archer M, Stocker R, Fitzgerald M. 2014. Reactive species and oxidative stress in optic nerve vulnerable to secondary degeneration. Exp Neurol 261:136–146. http://dx.doi.org/10.1016/j.expneurol.2014.06.007.
  • Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L. 1998. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285. http://dx.doi.org/10.1056/NEJM199801293380502.
  • Sonomoto K, Yamaoka K, Oshita K, Fukuyo S, Zhang X, Nakano K, Okada Y, Tanaka Y. 2012. Interleukin-1β induces differentiation of human mesenchymal stem cells into osteoblasts via the Wnt-5a/receptor tyrosine kinase-like orphan receptor 2 pathway. Arthritis Rheum 64:3355–3363. http://dx.doi.org/10.1002/art.34555.
  • Ge XP, Gan YH, Zhang CG, Zhou CY, Ma KT, Meng JH, Ma XC. 2011. Requirement of the NF-κB pathway for induction of Wnt-5A by interleukin-1β in condylar chondrocytes of the temporomandibular joint: functional crosstalk between the Wnt-5a and NF-κB signaling pathways. Osteoarthritis Cartilage 19:111–117. http://dx.doi.org/10.1016/j.joca.2010.10.016.
  • Katula KS, Joyner-Powell NB, Hsu CC, Kuk A. 2012. Differential regulation of the mouse and human Wnt5a alternative promoters A and B. DNA Cell Biol 31:1585–1597. http://dx.doi.org/10.1089/dna.2012.1698.
  • Fancy SP, Harrington EP, Yuen TJ, Silbereis JC, Zhao C, Baranzini SE, Bruce CC, Otero JJ, Huang EJ, Nusse R, Franklin RJ, Rowitch DH. 2011. Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nat Neurosci 14:1009–1016. http://dx.doi.org/10.1038/nn.2855.
  • Gros J, Hu JK, Vinegoni C, Feruglio PF, Weissleder R, Tabin CJ. 2010. WNT5A/JNK and FGF/MAPK pathways regulate the cellular events shaping the vertebrate limb bud. Curr Biol 20:1993–2002. http://dx.doi.org/10.1016/j.cub.2010.09.063.
  • Kikuchi A, Yamamoto H, Sato A, Matsumoto S. 2012. Wnt5a: its signalling, functions and implication in diseases. Acta Physiol (Oxf) 204:17–33. http://dx.doi.org/10.1111/j.1748-1716.2011.02294.x.
  • Nishita M, Enomoto M, Yamagata K, Minami Y. 2010. Cell/tissue-tropic functions of Wnt5a signaling in normal and cancer cells. Trends Cell Biol 20:346–354. http://dx.doi.org/10.1016/j.tcb.2010.03.001.
  • Yamaguchi TP, Bradley A, McMahon AP, Jones S. 1999. A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126:1211–1223.
  • Mills Ko E, Ma JH, Guo F, Miers L, Lee E, Bannerman P, Burns T, Ko D, Sohn J, Soulika AM, Pleasure D. 2014. Deletion of astroglial CXCL10 delays clinical onset but does not affect progressive axon loss in a murine autoimmune multiple sclerosis model. J Neuroinflammation 11:105. http://dx.doi.org/10.1186/1742-2094-11-105.
  • Farkas O, Povlishock JT. 2007. Cellular and subcellular change evoked by diffuse traumatic brain injury: a complex web of change extending far beyond focal damage. Prog Brain Res 161:43–59. http://dx.doi.org/10.1016/S0079-6123(06)61004-2.
  • Coleman M. 2005. Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6:889–898. http://dx.doi.org/10.1038/nrn1788.
  • Payne SC, Bartlett CA, Harvey AR, Dunlop SA, Fitzgerald M. 2011. Chronic swelling and abnormal myelination during secondary degeneration after partial injury to a central nervous system tract. J Neurotrauma 28:1077–1088. http://dx.doi.org/10.1089/neu.2010.1665.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.