32
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Gle1 Regulates RNA Binding of the DEAD-Box Helicase Ded1 in Its Complex Role in Translation Initiation

, , , , , , & show all
Article: e00139-17 | Received 27 Mar 2017, Accepted 21 Jul 2017, Published online: 17 Mar 2023

REFERENCES

  • Linder P, Jankowsky E. 2011. From unwinding to clamping—the DEAD box RNA helicase family. Nat Rev Mol Cell Biol 12:505–516. https://doi.org/10.1038/nrm3154.
  • Sharma D, Jankowsky E. 2014. The Ded1/DDX3 subfamily of DEAD-box RNA helicases. Crit Rev Biochem Mol Biol 49:343–360. https://doi.org/10.3109/10409238.2014.931339.
  • Foresta C, Ferlin A, Moro E. 2000. Deletion and expression analysis of AZFa genes on the human Y chromosome revealed a major role for DBY in male infertility. Hum Mol Genet 9:1161–1169. https://doi.org/10.1093/hmg/9.8.1161.
  • Northcott PA, Jones DT, Kool M, Robinson GW, Gilbertson RJ, Cho YJ, Pomeroy SL, Korshunov A, Lichter P, Taylor MD, Pfister SM. 2012. Medulloblastomics: the end of the beginning. Nat Rev Cancer 12:818–834. https://doi.org/10.1038/nrc3410.
  • Kool M, Jones DT, Jager N, Northcott PA, Pugh TJ, Hovestadt V, Piro RM, Esparza LA, Markant SL, Remke M, Milde T, Bourdeaut F, Ryzhova M, Sturm D, Pfaff E, Stark S, Hutter S, Seker-Cin H, Johann P, Bender S, Schmidt C, Rausch T, Shih D, Reimand J, Sieber L, Wittmann A, Linke L, Witt H, Weber UD, Zapatka M, Konig R, Beroukhim R, Bergthold G, van Sluis P, Volckmann R, Koster J, Versteeg R, Schmidt S, Wolf S, Lawerenz C, Bartholomae CC, von Kalle C, Unterberg A, Herold-Mende C, Hofer S, Kulozik AE, von Deimling A, Scheurlen W, Felsberg J, Reifenberger G, Hasselblatt M, Crawford JR, Grant GA, Jabado N, Perry A, Cowdrey C, Croul S, Zadeh G, Korbel JO, Doz F, Delattre O, Bader GD, McCabe MG, Collins VP, Kieran MW, Cho YJ, Pomeroy SL, Witt O, Brors B, Taylor MD, Schüller U, Korshunov A, Eils R, Wechsler-Reya RJ, Lichter P, Pfister SM ICGC PedBrain Tumor Project. 2014. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell 25:393–405. https://doi.org/10.1016/j.ccr.2014.02.004.
  • Sen ND, Zhou F, Ingolia NT, Hinnebusch AG. 2015. Genome-wide analysis of translational efficiency reveals distinct but overlapping functions of yeast DEAD-box RNA helicases Ded1 and eIF4A. Genome Res 25:1196–1205. https://doi.org/10.1101/gr.191601.115.
  • Hilliker A, Gao Z, Jankowsky E, Parker R. 2011. The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4F-mRNA complex. Mol Cell 43:962–972. https://doi.org/10.1016/j.molcel.2011.08.008.
  • Bolger TA, Wente SR. 2011. Gle1 is a multifunctional DEAD-box protein regulator that modulates Ded1 in translation initiation. J Biol Chem 286:39750–39759. https://doi.org/10.1074/jbc.M111.299321.
  • Chuang RY, Weaver PL, Liu Z, Chang TH. 1997. Requirement of the DEAD-Box protein Ded1p for messenger RNA translation. Science 275:1468–1471. https://doi.org/10.1126/science.275.5305.1468.
  • de la Cruz J, Iost I, Kressler D, Linder P. 1997. The p20 and Ded1 proteins have antagonistic roles in eIF4E-dependent translation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 94:5201–5206. https://doi.org/10.1073/pnas.94.10.5201.
  • Coller J, Parker R. 2005. General translational repression by activators of mRNA decapping. Cell 122:875–886. https://doi.org/10.1016/j.cell.2005.07.012.
  • Beckham C, Hilliker A, Cziko AM, Noueiry A, Ramaswami M, Parker R. 2008. The DEAD-box RNA helicase Ded1p affects and accumulates in Saccharomyces cerevisiae P-bodies. Mol Biol Cell 19:984–993. https://doi.org/10.1091/mbc.E07-09-0954.
  • Putnam AA, Gao Z, Liu F, Jia H, Yang Q, Jankowsky E. 2015. Division of labor in an oligomer of the DEAD-box RNA helicase Ded1p. Mol Cell 59:541–552. https://doi.org/10.1016/j.molcel.2015.06.030.
  • Murphy R, Wente SR. 1996. An RNA-export mediator with an essential nuclear export signal. Nature 383:357–360. https://doi.org/10.1038/383357a0.
  • Watkins JL, Murphy R, Emtage JL, Wente SR. 1998. The human homologue of Saccharomyces cerevisiae Gle1p is required for poly(A)+ RNA export. Proc Natl Acad Sci U S A 95:6779–6784. https://doi.org/10.1073/pnas.95.12.6779.
  • Miller AL, Suntharalingam M, Johnson SL, Audhya A, Emr SD, Wente SR. 2004. Cytoplasmic inositol hexakisphosphate production is sufficient for mediating the Gle1-mRNA export pathway. J Biol Chem 279:51022–51032. https://doi.org/10.1074/jbc.M409394200.
  • Alcazar-Roman AR, Tran EJ, Guo S, Wente SR. 2006. Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Nat Cell Biol 8:711–716. https://doi.org/10.1038/ncb1427.
  • Weirich CS, Erzberger JP, Flick JS, Berger JM, Thorner J, Weis K. 2006. Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nat Cell Biol 8:668–676. https://doi.org/10.1038/ncb1424.
  • Alcazar-Roman AR, Bolger TA, Wente SR. 2010. Control of mRNA export and translation termination by inositol hexakisphosphate requires specific interaction with Gle1. J Biol Chem 285:16683–16692. https://doi.org/10.1074/jbc.M109.082370.
  • Yang HS, Cho MH, Zakowicz H, Hegamyer G, Sonenberg N, Colburn NH. 2004. A novel function of the MA-3 domains in transformation and translation suppressor Pdcd4 is essential for its binding to eukaryotic translation initiation factor 4A. Mol Cell Biol 24:3894–3906. https://doi.org/10.1128/MCB.24.9.3894-3906.2004.
  • Montpetit B, Thomsen ND, Helmke KJ, Seeliger MA, Berger JM, Weis K. 2011. A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export. Nature 472:238–242. https://doi.org/10.1038/nature09862.
  • Steckelberg AL, Boehm V, Gromadzka AM, Gehring NH. 2012. CWC22 connects pre-mRNA splicing and exon junction complex assembly. Cell Rep 2:454–461. https://doi.org/10.1016/j.celrep.2012.08.017.
  • Bolger TA, Folkmann AW, Tran EJ, Wente SR. 2008. The mRNA export factor Gle1 and inositol hexakisphosphate regulate distinct stages of translation. Cell 134:624–633. https://doi.org/10.1016/j.cell.2008.06.027.
  • Nousiainen HO, Kestila M, Pakkasjarvi N, Honkala H, Kuure S, Tallila J, Vuopala K, Ignatius J, Herva R, Peltonen L. 2008. Mutations in mRNA export mediator GLE1 result in a fetal motoneuron disease. Nat Genet 40:155–157. https://doi.org/10.1038/ng.2007.65.
  • Kaneb HM, Folkmann AW, Belzil VV, Jao LE, Leblond CS, Girard SL, Daoud H, Noreau A, Rochefort D, Hince P, Szuto A, Levert A, Vidal S, Andre-Guimont C, Camu W, Bouchard JP, Dupre N, Rouleau GA, Wente SR, Dion PA. 2015. Deleterious mutations in the essential mRNA metabolism factor, hGle1, in amyotrophic lateral sclerosis. Hum Mol Genet 24:1363–1373. https://doi.org/10.1093/hmg/ddu545.
  • Hodge CA, Tran EJ, Noble KN, Alcazar-Roman AR, Ben-Yishay R, Scarcelli JJ, Folkmann AW, Shav-Tal Y, Wente SR, Cole CN. 2011. The Dbp5 cycle at the nuclear pore complex during mRNA export I: dbp5 mutants with defects in RNA binding and ATP hydrolysis define key steps for Nup159 and Gle1. Genes Dev 25:1052–1064. https://doi.org/10.1101/gad.2041611.
  • Pospisek M, Valasek L. 2013. Polysome profile analysis—yeast. Methods Enzymol 530:173–181. https://doi.org/10.1016/B978-0-12-420037-1.00009-9.
  • Senissar M, Le Saux A, Belgareh-Touze N, Adam C, Banroques J, Tanner NK. 2014. The DEAD-box helicase Ded1 from yeast is an mRNP cap-associated protein that shuttles between the cytoplasm and nucleus. Nucleic Acids Res 42:10005–10022. https://doi.org/10.1093/nar/gku584.
  • Segref A, Sharma K, Doye V, Hellwig A, Huber J, Luhrmann R, Hurt E. 1997. Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. EMBO J 16:3256–3271. https://doi.org/10.1093/emboj/16.11.3256.
  • Grant CM, Miller PF, Hinnebusch AG. 1994. Requirements for intercistronic distance and level of eukaryotic initiation factor 2 activity in reinitiation on GCN4 mRNA vary with the downstream cistron. Mol Cell Biol 14:2616–2628. https://doi.org/10.1128/MCB.14.4.2616.
  • Donahue TF, Cigan AM. 1988. Genetic selection for mutations that reduce or abolish ribosomal recognition of the HIS4 translational initiator region. Mol Cell Biol 8:2955–2963. https://doi.org/10.1128/MCB.8.7.2955.
  • Oberer M, Marintchev A, Wagner G. 2005. Structural basis for the enhancement of eIF4A helicase activity by eIF4G. Genes Dev 19:2212–2223. https://doi.org/10.1101/gad.1335305.
  • Kelley LA, Sternberg MJ. 2009. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371. https://doi.org/10.1038/nprot.2009.2.
  • Hogbom M, Collins R, van den Berg S, Jenvert RM, Karlberg T, Kotenyova T, Flores A, Karlsson Hedestam GB, Schiavone LH. 2007. Crystal structure of conserved domains 1 and 2 of the human DEAD-box helicase DDX3X in complex with the mononucleotide AMP. J Mol Biol 372:150–159. https://doi.org/10.1016/j.jmb.2007.06.050.
  • Folkmann AW, Noble KN, Cole CN, Wente SR. 2011. Dbp5, Gle1-IP6 and Nup159: a working model for mRNP export. Nucleus 2:540–548. https://doi.org/10.4161/nucl.2.6.17881.
  • Loh PG, Yang HS, Walsh MA, Wang Q, Wang X, Cheng Z, Liu D, Song H. 2009. Structural basis for translational inhibition by the tumour suppressor Pdcd4. EMBO J 28:274–285. https://doi.org/10.1038/emboj.2008.278.
  • Buchwald G, Schussler S, Basquin C, Le Hir H, Conti E. 2013. Crystal structure of the human eIF4AIII-CWC22 complex shows how a DEAD-box protein is inhibited by a MIF4G domain. Proc Natl Acad Sci U S A 110:E4611–E4618. https://doi.org/10.1073/pnas.1314684110.
  • Iost I, Dreyfus M, Linder P. 1999. Ded1p, a DEAD-box protein required for translation initiation in Saccharomyces cerevisiae, is an RNA helicase. J Biol Chem 274:17677–17683. https://doi.org/10.1074/jbc.274.25.17677.
  • Buchan JR, Parker R. 2009. Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36:932–941. https://doi.org/10.1016/j.molcel.2009.11.020.
  • Aditi Folkmann AW, Wente SR. 2015. Cytoplasmic hGle1A regulates stress granules by modulation of translation. Mol Biol Cell 26:1476–1490. https://doi.org/10.1091/mbc.E14-11-1523.
  • Berthelot K, Muldoon M, Rajkowitsch L, Hughes J, McCarthy JE. 2004. Dynamics and processivity of 40S ribosome scanning on mRNA in yeast. Mol Microbiol 51:987–1001. https://doi.org/10.1046/j.1365-2958.2003.03898.x.
  • Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O'Shea EK, Weissman JS. 2003. Global analysis of protein expression in yeast. Nature 425:671–672. https://doi.org/10.1038/425671a.
  • Folkmann AW, Collier SE, Zhan X, Aditi Ohi MD, Wente SR. 2013. Gle1 functions during mRNA export in an oligomeric complex that is altered in human disease. Cell 155:582–593. https://doi.org/10.1016/j.cell.2013.09.023.
  • Valiente-Echeverria F, Hermoso MA, Soto-Rifo R. 2015. RNA helicase DDX3: at the crossroad of viral replication and antiviral immunity. Rev Med Virol 25:286–299. https://doi.org/10.1002/rmv.1845.
  • Tran EJ, Zhou Y, Corbett AH, Wente SR. 2007. The DEAD-box protein Dbp5 controls mRNA export by triggering specific RNA:protein remodeling events. Mol Cell 28:850–859. https://doi.org/10.1016/j.molcel.2007.09.019.
  • Yaffe MP, Schatz G. 1984. Two nuclear mutations that block mitochondrial protein import in yeast. Proc Natl Acad Sci U S A 81:4819–4823. https://doi.org/10.1073/pnas.81.15.4819.
  • Balagopal V, Parker R. 2011. Stm1 modulates translation after 80S formation in Saccharomyces cerevisiae. RNA 17:835–842. https://doi.org/10.1261/rna.2677311.
  • Wu C, Amrani N, Jacobson A, Sachs MS. 2007. The use of fungal in vitro systems for studying translational regulation. Methods Enzymol 429:203–225. https://doi.org/10.1016/S0076-6879(07)29010-X.
  • Liu F, Putnam A, Jankowsky E. 2008. ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Proc Natl Acad Sci U S A 105:20209–20214. https://doi.org/10.1073/pnas.0811115106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.