24
Views
26
CrossRef citations to date
0
Altmetric
Article

Phosphoinositide-Dependent Kinase 1 and mTORC2 Synergistically Maintain Postnatal Heart Growth and Heart Function in Mice

, , , , , , , , , , , , , & show all
Pages 1966-1975 | Received 28 Jan 2014, Accepted 07 Mar 2014, Published online: 20 Mar 2023

REFERENCES

  • Braunwald E. 2013. Cardiovascular science: opportunities for translating research into improved care. J. Clin. Invest. 123:6–10. http://dx.doi.org/10.1172/JCI67541.
  • McNally EM, Golbus JR, Puckelwartz MJ. 2013. Genetic mutations and mechanisms in dilated cardiomyopathy. J. Clin. Invest. 123:19–26. http://dx.doi.org/10.1172/JCI62862.
  • Hershberger RE, Morales A, Siegfried JD. 2010. Clinical and genetic issues in dilated cardiomyopathy: a review for genetics professionals. Genet. Med. 12:655–667. http://dx.doi.org/10.1097/GIM.0b013e3181f2481f.
  • Jefferies JL, Towbin JA. 2010. Dilated cardiomyopathy. Lancet 375:752–762. http://dx.doi.org/10.1016/S0140-6736(09)62023-7.
  • Olson EN, Schneider MD. 2003. Sizing up the heart: development redux in disease. Genes Dev. 17:1937–1956. http://dx.doi.org/10.1101/gad.1110103.
  • Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA. 1996. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 15:6541.
  • Alessi DR, Deak M, Casamayor A, Barry Caudwell F, Morrice N, Norman DG, Gaffney P, Reese CB, MacDougall CN, Harbison D. 1997. 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr. Biol. 7:776–789. http://dx.doi.org/10.1016/S0960-9822(06)00336-8.
  • Brazil D, Yang Z, Hemmings B. 2004. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem. Sci. 29:233–242. http://dx.doi.org/10.1016/j.tibs.2004.03.006.
  • Chang Z, Xiao Q, Feng Q, Yang Z. 2010. PKB/Akt signaling in heart development and disease. Front. Biosci. 2:1485–1491. http://dx.doi.org/10.2741/E207.
  • Mora AKD, van Aalten DM, Alessi DR. 2004. PDK1, the master regulator of AGC kinase signal transduction. Semin. Cell Dev. Biol. 15:161–170. http://dx.doi.org/10.1016/j.semcdb.2003.12.022.
  • Guertin DA, Sabatini DM. 2009. The pharmacology of mTOR inhibition. Sci. Signal. 2:24. http://dx.doi.org/10.1126/scisignal.267pe24.
  • Polak P, Hall M. 2009. mTOR and the control of whole body metabolism. Curr. Opin. Cell Biol. 21:209–218. http://dx.doi.org/10.1016/j.ceb.2009.01.024.
  • Sarbassov D, Guertin D, Ali S, Sabatini D. 2005. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101. http://dx.doi.org/10.1126/science.1106148.
  • Williams MR, Arthur JSC, Balendran A, van der Kaay J, Poli V, Cohen P, Alessi DR. 2000. The role of 3-phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells. Curr. Biol. 10:439–448. http://dx.doi.org/10.1016/S0960-9822(00)00441-3.
  • Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, Brown M, Fitzgerald KJ, Sabatini DM. 2006. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKC [alpha], but not S6K1. Dev. Cell 11:859–871. http://dx.doi.org/10.1016/j.devcel.2006.10.007.
  • Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, Huang Q, Qin J, Su B. 2006. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127:125–137. http://dx.doi.org/10.1016/j.cell.2006.08.033.
  • Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN. 2002. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10:457–468. http://dx.doi.org/10.1016/S1097-2765(02)00636-6.
  • Zhang D, Contu R, Latronico MVG, Zhang J, Rizzi R, Catalucci D, Miyamoto S, Huang K, Ceci M, Gu Y, Dalton ND, Peterson KL, Guan KL, Brown JH, Chen J, Sonenberg N, Condorelli G. 2010. MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. J. Clin. Invest. 120:2805–2816. http://dx.doi.org/10.1172/JCI43008.
  • Xie X, Zhang D, Zhao B, Lu M-K, You M, Condorelli G, Wang C-Y, Guan K-L. 2011. IκB kinase ε and TANK-binding kinase 1 activate AKT by direct phosphorylation. Proc. Natl. Acad. Sci. U. S. A. 108:6474–6479. http://dx.doi.org/10.1073/pnas.1016132108.
  • Di R, Wu X, Chang Z, Zhao X, Feng Q, Lu S, Luan Q, Hemmings B, Li X, Yang Z. 2012. S6K inhibition renders cardiac protection against myocardial infarction through PDK1 phosphorylation of Akt. Biochem. J. 441:199–207. http://dx.doi.org/10.1042/BJ20110033.
  • He W, Peng Y, Zhang W, Lv N, Tang J, Chen C, Zhang C, Gao S, Chen H, Zhi G. 2008. Myosin light chain kinase is central to smooth muscle contraction and required for gastrointestinal motility in mice. Gastroenterology 135:610–620. http://dx.doi.org/10.1053/j.gastro.2008.05.032.
  • Yang Z, Tschopp O, Hemmings-Mieszczak M, Feng J, Brodbeck D, Perentes E, Hemmings B. 2003. Protein kinase Bα/Akt 1 regulates placental development and fetal growth. J. Biol. Chem. 278:32124–32131. http://dx.doi.org/10.1074/jbc.M302847200.
  • Feng Q, Di R, Tao F, Chang Z, Lu S, Fan W, Shan C, Li X, Yang Z. 2010. PDK1 regulates vascular remodeling and promotes epithelial-mesenchymal transition in cardiac development. Mol. Cell. Biol. 30:3711–3721. http://dx.doi.org/10.1128/MCB.00420-10.
  • Mora A, Davies A, Bertrand L, Sharif I, Budas G, Jovanovi S, Mouton V, Kahn C, Lucocq J, Gray G, Jovanović A, Alessi D. 2003. Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. EMBO J. 22:4666–4676. http://dx.doi.org/10.1093/emboj/cdg469.
  • Shiota C, Woo JT, Lindner J, Shelton KD, Magnuson MA. 2006. Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability. Dev. Cell 11:583–589. http://dx.doi.org/10.1016/j.devcel.2006.08.013.
  • Yang Z, Tschopp O, Di-Poi N, Bruder E, Baudry A, Dummler B, Wahli W, Hemmings B. 2005. Dosage-dependent effects of Akt1/protein kinase Bα(PKBα) and Akt3/PKBγ on thymus, skin, and cardiovascular and nervous system development in mice. Mol. Cell. Biol. 25:10407–10418. http://dx.doi.org/10.1128/MCB.25.23.10407-10418.2005.
  • Chang Z, Zhang Q, Feng Q, Xu J, Teng T, Luan Q, Shan C, Hu Y, Hemmings BA, Gao X, Yang Z. 2010. Deletion of Akt1 causes heart defects and abnormal cardiomyocyte proliferation. Dev. Biol. 347:384–391. http://dx.doi.org/10.1016/j.ydbio.2010.08.033.
  • Bentzinger CF, Romanino K, Cloetta D, Lin S, Mascarenhas JB, Oliveri F, Xia J, Casanova E, Costa CF, Brink M, Zorzato F, Hall MN, Ruegg MA. 2008. Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab. 8:411–424. http://dx.doi.org/10.1016/j.cmet.2008.10.002.
  • Cybulski N, Polak P, Auwerx J, Ruegg MA, Hall MN. 2009. mTOR complex 2 in adipose tissue negatively controls whole-body growth. Proc. Natl. Acad. Sci. U. S. A. 106:9902–9907. http://dx.doi.org/10.1073/pnas.0811321106.
  • Lazorchak AS, Liu D, Facchinetti V, Di Lorenzo A, Sessa WC, Schatz DG, Su B. 2010. Sin1-mTORC2 SUppresses rag and il7r gene expression through Akt2 in B cells. Mol. Cell 3:433–443. http://dx.doi.org/10.1016/j.molcel.2010.07.031.
  • Oudit GY, Kassiri Z, Zhou J, Liu QC, Liu PP, Backx PH, Dawood F, Crackower MA, Scholey JW, Penninger JM. 2008. Loss of PTEN attenuates the development of pathological hypertrophy and heart failure in response to biomechanical stress. Cardiovasc. Res. 78:505–514. http://dx.doi.org/10.1093/cvr/cvn041.
  • Ruan H, Li J, Ren S, Gao J, Li G, Kim R, Wu H, Wang Y. 2009. Inducible and cardiac specific PTEN inactivation protects ischemia/reperfusion injury. J. Mol. Cell. Cardiol. 46:193–200. http://dx.doi.org/10.1016/j.yjmcc.2008.10.021.
  • Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski DP, Mak TW. 1998. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95:29–39. http://dx.doi.org/10.1016/S0092-8674(00)81780-8.
  • Keyes KT, Xu J, Long B, Zhang C, Hu Z, Ye Y. 2010. Pharmacological inhibition of PTEN limits myocardial infarct size and improves left ventricular function postinfarction. Am. J. Physiol. Heart Circ. Physiol. 298:H1198–H1208. http://dx.doi.org/10.1152/ajpheart.00915.2009.
  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. 2005. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098. http://dx.doi.org/10.1126/science.1106148.
  • Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM. 2006. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22:159–168. http://dx.doi.org/10.1016/j.molcel.2006.03.029.
  • Bertrand L, Horman S, Beauloye C, Vanoverschelde JL. 2008. Insulin signalling in the heart. Cardiovasc. Res. 79:238–248. http://dx.doi.org/10.1093/cvr/cvn093.
  • Feng J, Park J, Cron P, Hess D, Hemmings BA. 2004. Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J. Biol. Chem. 279:41189. http://dx.doi.org/10.1074/jbc.M406731200.
  • White DE, Coutu P, Shi Y-F, Tardif J-C, Nattel S, St Arnaud R, Dedhar S, Muller WJ. 2006. Targeted ablation of ILK from the murine heart results in dilated cardiomyopathy and spontaneous heart failure. Genes Dev. 20:2355–2360. http://dx.doi.org/10.1101/gad.1458906.
  • Zhu Y, Pires KM, Whitehead KJ, Olsen CD, Wayment B, Zhang YC, Bugger H, Ilkun O, Litwin SE, Thomas G. 2013. Mechanistic target of rapamycin (Mtor) is essential for murine embryonic heart development and growth. PLoS One 8:e54221. http://dx.doi.org/10.1371/journal.pone.0054221.
  • Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fumagalli S, Allegrini PR, Kozma SC, Auwerx J, Thomas G. 2004. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431:200–205. http://dx.doi.org/10.1038/nature02866.
  • Cairns RA, Harris IS, Mak TW. 2011. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11:85–95. http://dx.doi.org/10.1038/nrc2981.
  • Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J, Grazette L, Michael A, Hajjar R, Force T, Molkentin JD. 2001. Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 103:670–677. http://dx.doi.org/10.1161/01.CIR.103.5.670.
  • Nagoshi T, Matsui T, Aoyama T, Leri A, Anversa P, Li L, Ogawa W, del Monte F, Gwathmey JK, Grazette L, Hemmings B, Kass DA, Champion HC, Rosenzweig A. 2005. PI3K rescues the detrimental effects of chronic Akt activation in the heart during ischemia/reperfusion injury. J. Clin. Invest. 115:2128–2138. http://dx.doi.org/10.1172/JCI23073.
  • Ito K, Akazawa H, Tamagawa M, Furukawa K, Ogawa W, Yasuda N, Kudo Y, Liao C, Yamamoto R, Sato T. 2009. PDK1 coordinates survival pathways and β-adrenergic response in the heart. Proc. Natl. Acad. Sci. U. S. A. 106:8689. http://dx.doi.org/10.1073/pnas.0900064106.
  • Alfonso Mora AMD, Luc Bertrand IS, Grant RB. 2003. Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. EMBO J. 22:4666–4676. http://dx.doi.org/10.1093/emboj/cdg469.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.