44
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Peroxiredoxin 5 Inhibits Glutamate-Induced Neuronal Cell Death through the Regulation of Calcineurin-Dependent Mitochondrial Dynamics in HT22 Cells

, , , , , & ORCID Icon show all
Article: e00148-19 | Received 02 Apr 2019, Accepted 21 Jul 2019, Published online: 03 Mar 2023

REFERENCES

  • Zhou Y, Danbolt NC. 2014. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna) 121:799–817. https://doi.org/10.1007/s00702-014-1180-8.
  • Choi DW. 1988. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634. https://doi.org/10.1016/0896-6273(88)90162-6.
  • Lau A, Tymianski M. 2010. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460:525–542. https://doi.org/10.1007/s00424-010-0809-1.
  • Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL. 2013. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol 698:6–18. https://doi.org/10.1016/j.ejphar.2012.10.032.
  • Meador-Woodruff JH, Healy DJ. 2000. Glutamate receptor expression in schizophrenic brain. Brain Res Brain Res Rev 31:288–294. https://doi.org/10.1016/S0165-0173(99)00044-2.
  • Lin X, Zhao Y, Li S. 2017. Astaxanthin attenuates glutamate-induced apoptosis via inhibition of calcium influx and endoplasmic reticulum stress. Eur J Pharmacol 806:43–51. https://doi.org/10.1016/j.ejphar.2017.04.008.
  • Tymianski M. 1996. Cytosolic calcium concentrations and cell death in vitro. Adv Neurol 71:85–105.
  • Arundine M, Tymianski M. 2004. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61:657–668. https://doi.org/10.1007/s00018-003-3319-x.
  • Robinson BH. 1998. Human complex I deficiency: clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect. Biochim Biophys Acta 1364:271–286. https://doi.org/10.1016/s0005-2728(98)00033-4.
  • Fleury C, Mignotte B, Vayssiere JL. 2002. Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84:131–141. https://doi.org/10.1016/S0300-9084(02)01369-X.
  • Le Bras M, Clement MV, Pervaiz S, Brenner C. 2005. Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol 20:205–219. https://doi.org/10.14670/HH-20.205.
  • Zhang Y, Lu X, Bhavnani BR. 2003. Equine estrogens differentially inhibit DNA fragmentation induced by glutamate in neuronal cells by modulation of regulatory proteins involved in programmed cell death. BMC Neurosci 4:32. https://doi.org/10.1186/1471-2202-4-32.
  • Ha JS, Park SS. 2006. Glutamate-induced oxidative stress, but not cell death, is largely dependent upon extracellular calcium in mouse neuronal HT22 cells. Neurosci Lett 393:165–169. https://doi.org/10.1016/j.neulet.2005.09.056.
  • Sattler R, Tymianski M. 2001. Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol 24:107–129. https://doi.org/10.1385/MN:24:1-3:107.
  • Poynton RA, Hampton MB. 2014. Peroxiredoxins as biomarkers of oxidative stress. Biochim Biophys Acta 1840:906–912. https://doi.org/10.1016/j.bbagen.2013.08.001.
  • Lee DG, Kam MK, Kim KM, Kim HS, Kwon OS, Lee HS, Lee DS. 2018. Peroxiredoxin 5 prevents iron overload-induced neuronal death by inhibiting mitochondrial fragmentation and endoplasmic reticulum stress in mouse hippocampal HT-22 cells. Int J Biochem Cell Biol 102:10–19. https://doi.org/10.1016/j.biocel.2018.06.005.
  • Kim MH, Park SJ, Kim JH, Seong JB, Kim KM, Woo HA, Lee DS. 2018. Peroxiredoxin 5 regulates adipogenesis-attenuating oxidative stress in obese mouse models induced by a high-fat diet. Free Radic Biol Med 123:27–38. https://doi.org/10.1016/j.freeradbiomed.2018.05.061.
  • Park J, Kim B, Chae U, Lee DG, Kam MK, Lee SR, Lee S, Lee HS, Park JW, Lee DS. 2017. Peroxiredoxin 5 decreases beta-amyloid-mediated cyclin-dependent kinase 5 activation through regulation of Ca(2+)-mediated calpain activation. Antioxid Redox Signal 27:715–726. https://doi.org/10.1089/ars.2016.6810.
  • Park J, Choi H, Kim B, Chae U, Lee DG, Lee SR, Lee S, Lee HS, Lee DS. 2016. Peroxiredoxin 5 (Prx5) decreases LPS-induced microglial activation through regulation of Ca(2+)/calcineurin-Drp1-dependent mitochondrial fission. Free Radic Biol Med 99:392–404. https://doi.org/10.1016/j.freeradbiomed.2016.08.030.
  • Jin MH, Lee YH, Kim JM, Sun HN, Moon EY, Shong MH, Kim SU, Lee SH, Lee TH, Yu DY, Lee DS. 2005. Characterization of neural cell types expressing peroxiredoxins in mouse brain. Neurosci Lett 381:252–257. https://doi.org/10.1016/j.neulet.2005.02.048.
  • Cassano T, Pace L, Bedse G, Lavecchia AM, De Marco F, Gaetani S, Serviddio G. 2016. Glutamate and mitochondria: two prominent players in the oxidative stress-induced neurodegeneration. Curr Alzheimer Res 13:185–197. https://doi.org/10.2174/1567205013666151218132725.
  • Nunnari J, Marshall WF, Straight A, Murray A, Sedat JW, Walter P. 1997. Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol Biol Cell 8:1233–1242. https://doi.org/10.1091/mbc.8.7.1233.
  • Archer SL. 2013. Mitochondrial dynamics–mitochondrial fission and fusion in human diseases. N Engl J Med 369:2236–2251. https://doi.org/10.1056/NEJMra1215233.
  • Manczak M, Calkins MJ, Reddy PH. 2011. Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum Mol Genet 20:2495–2509. https://doi.org/10.1093/hmg/ddr139.
  • Roe AJ, Qi X. 2018. Drp1 phosphorylation by MAPK1 causes mitochondrial dysfunction in cell culture model of Huntington’s disease. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2018.01.114.
  • Hu C, Huang Y, Li L. 2017. Drp1-dependent mitochondrial fission plays critical roles in physiological and pathological progresses in mammals. Int J Mol Sci 18:E144. https://doi.org/10.3390/ijms18010144.
  • Chang CR, Blackstone C. 2007. Drp1 phosphorylation and mitochondrial regulation. EMBO Rep 8:1088–1089. https://doi.org/10.1038/sj.embor.7401118.
  • Jahani-Asl A, Slack RS. 2007. The phosphorylation state of Drp1 determines cell fate. EMBO Rep 8:912–913. https://doi.org/10.1038/sj.embor.7401077.
  • Cho B, Choi SY, Cho HM, Kim HJ, Sun W. 2013. Physiological and pathological significance of dynamin-related protein 1 (drp1)-dependent mitochondrial fission in the nervous system. Exp Neurobiol 22:149–157. https://doi.org/10.5607/en.2013.22.3.149.
  • Cereghetti GM, Stangherlin A, Martins de Brito O, Chang CR, Blackstone C, Bernardi P, Scorrano L. 2008. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci U S A 105:15803–15808. https://doi.org/10.1073/pnas.0808249105.
  • Han XJ, Lu YF, Li SA, Kaitsuka T, Sato Y, Tomizawa K, Nairn AC, Takei K, Matsui H, Matsushita M. 2008. CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol 182:573–585. https://doi.org/10.1083/jcb.200802164.
  • Meldrum BS. 2000. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130:1007S–1015S. https://doi.org/10.1093/jn/130.4.1007S.
  • Chan DC. 2006. Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252. https://doi.org/10.1016/j.cell.2006.06.010.
  • Musson RE, Smit NP. 2011. Regulatory mechanisms of calcineurin phosphatase activity. Curr Med Chem 18:301–315. https://doi.org/10.2174/092986711794088407.
  • Rhee SG, Kil IS. 2017. Multiple functions and regulation of mammalian peroxiredoxins. Annu Rev Biochem 86:749–775. https://doi.org/10.1146/annurev-biochem-060815-014431.
  • Kang SW, Rhee SG, Chang TS, Jeong W, Choi MH. 2005. 2-Cys peroxiredoxin function in intracellular signal transduction: therapeutic implications. Trends Mol Med 11:571–578. https://doi.org/10.1016/j.molmed.2005.10.006.
  • Shuvaeva TM, Novoselov VI, Fesenko EE, Lipkin VM. 2009. Peroxiredoxins, a new family of antioxidant proteins. Bioorg Khim 35:581–596.
  • Perkins A, Nelson KJ, Parsonage D, Poole LB, Karplus PA. 2015. Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci 40:435–445. https://doi.org/10.1016/j.tibs.2015.05.001.
  • Immenschuh S, Baumgart-Vogt E. 2005. Peroxiredoxins, oxidative stress, and cell proliferation. Antioxid Redox Signal 7:768–777. https://doi.org/10.1089/ars.2005.7.768.
  • Hudson AL, Sotirchos IM, Davey MW. 2011. The activity and hydrogen peroxide sensitivity of the peroxiredoxins from the parasitic nematode Haemonchus contortus. Mol Biochem Parasitol 176:17–24. https://doi.org/10.1016/j.molbiopara.2010.11.006.
  • Ahn HM, Yoo JW, Lee S, Lee HJ, Lee HS, Lee DS. 2017. Peroxiredoxin 5 promotes the epithelial-mesenchymal transition in colon cancer. Biochem Biophys Res Commun 487:580–586. https://doi.org/10.1016/j.bbrc.2017.04.094.
  • Radyuk SN, Michalak K, Klichko VI, Benes J, Orr WC. 2010. Peroxiredoxin 5 modulates immune response in Drosophila. Biochim Biophys Acta 1800:1153–1163. https://doi.org/10.1016/j.bbagen.2010.06.010.
  • Goemaere J, Knoops B. 2012. Peroxiredoxin distribution in the mouse brain with emphasis on neuronal populations affected in neurodegenerative disorders. J Comp Neurol 520:258–280. https://doi.org/10.1002/cne.22689.
  • Suzuki M, Nelson AD, Eickstaedt JB, Wallace K, Wright LS, Svendsen CN. 2006. Glutamate enhances proliferation and neurogenesis in human neural progenitor cell cultures derived from the fetal cortex. Eur J Neurosci 24:645–653. https://doi.org/10.1111/j.1460-9568.2006.04957.x.
  • Bruijn LI, Miller TM, Cleveland DW. 2004. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27:723–749. https://doi.org/10.1146/annurev.neuro.27.070203.144244.
  • Caudle WM, Zhang J. 2009. Glutamate, excitotoxicity, and programmed cell death in Parkinson disease. Exp Neurol 220:230–233. https://doi.org/10.1016/j.expneurol.2009.09.027.
  • Coyle JT, Puttfarcken P. 1993. Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695. https://doi.org/10.1126/science.7901908.
  • Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT. 1989. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2:1547–1558. https://doi.org/10.1016/0896-6273(89)90043-3.
  • Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD. 2015. Researching glutamate-induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci 9:91. https://doi.org/10.3389/fncel.2015.00091.
  • Atlante A, Calissano P, Bobba A, Giannattasio S, Marra E, Passarella S. 2001. Glutamate neurotoxicity, oxidative stress and mitochondria. FEBS Lett 497:1–5. https://doi.org/10.1016/s0014-5793(01)02437-1.
  • Boulos S, Meloni BP, Arthur PG, Bojarski C, Knuckey NW. 2007. Peroxiredoxin 2 overexpression protects cortical neuronal cultures from ischemic and oxidative injury but not glutamate excitotoxicity, whereas Cu/Zn superoxide dismutase 1 overexpression protects only against oxidative injury. J Neurosci Res 85:3089–3097. https://doi.org/10.1002/jnr.21429.
  • Jia J, Zhang L, Shi X, Wu M, Zhou X, Liu X, Huo T. 2016. SOD2 mediates amifostine-induced protection against glutamate in PC12 cells. Oxid Med Cell Longev 2016:4202437. https://doi.org/10.1155/2016/4202437.
  • Fatma N, Kubo E, Sen M, Agarwal N, Thoreson WB, Camras CB, Singh DP. 2008. Peroxiredoxin 6 delivery attenuates TNF-alpha-and glutamate-induced retinal ganglion cell death by limiting ROS levels and maintaining Ca2+ homeostasis. Brain Res 1233:63–78. https://doi.org/10.1016/j.brainres.2008.07.076.
  • Yan Y, Wei CL, Zhang WR, Cheng HP, Liu J. 2006. Cross-talk between calcium and reactive oxygen species signaling. Acta Pharmacol Sin 27:821–826. https://doi.org/10.1111/j.1745-7254.2006.00390.x.
  • Kann O, Kovacs R. 2007. Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292:C641–657. https://doi.org/10.1152/ajpcell.00222.2006.
  • Meeusen SL, Nunnari J. 2005. How mitochondria fuse. Curr Opin Cell Biol 17:389–394. https://doi.org/10.1016/j.ceb.2005.06.014.
  • Ni HM, Williams JA, Ding WX. 2015. Mitochondrial dynamics and mitochondrial quality control. Redox Biol 4:6–13. https://doi.org/10.1016/j.redox.2014.11.006.
  • Tilokani L, Nagashima S, Paupe V, Prudent J. 2018. Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem 62:341–360. https://doi.org/10.1042/EBC20170104.
  • Cribbs JT, Strack S. 2007. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8:939–944. https://doi.org/10.1038/sj.embor.7401062.
  • Southern JA, Young DF, Heaney F, Baumgartner WK, Randall RE. 1991. Identification of an epitope on the P and V proteins of simian virus 5 that distinguishes between two isolates with different biological characteristics. J Gen Virol 72:1551–1557. https://doi.org/10.1099/0022-1317-72-7-1551.
  • Knoops B, Goemaere J, Van der Eecken V, Declercq JP. 2011. Peroxiredoxin 5: structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin. Antioxid Redox Signal 15:817–829. https://doi.org/10.1089/ars.2010.3584.
  • Kim B, Park J, Chang KT, Lee DS. 2016. Peroxiredoxin 5 prevents amyloid-beta oligomer-induced neuronal cell death by inhibiting ERK-Drp1-mediated mitochondrial fragmentation. Free Radic Biol Med 90:184–194. https://doi.org/10.1016/j.freeradbiomed.2015.11.015.
  • Park J, Choi H, Min JS, Park SJ, Kim JH, Park HJ, Kim B, Chae JI, Yim M, Lee DS. 2013. Mitochondrial dynamics modulate the expression of pro-inflammatory mediators in microglial cells. J Neurochem 127:221–232. https://doi.org/10.1111/jnc.12361.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.