127
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Erf Affects Commitment and Differentiation of Osteoprogenitor Cells in Cranial Sutures via the Retinoic Acid Pathway

, , , ORCID Icon, , , , , & ORCID Icon show all
Article: e00149-21 | Received 07 Apr 2021, Accepted 29 Apr 2021, Published online: 03 Mar 2023

REFERENCES

  • Morriss-Kay GM, Wilkie AO. 2005. Growth of the normal skull vault and its alteration in craniosynostosis: insights from human genetics and experimental studies. J Anat 207:637–653. https://doi.org/10.1111/j.1469-7580.2005.00475.x.
  • Opperman LA. 2000. Cranial sutures as intramembranous bone growth sites. Dev Dyn 219:472–485. https://doi.org/10.1002/1097-0177(2000)9999:9999<::AID-DVDY1073>3.0.CO;2-F.
  • Debnath S, Yallowitz AR, McCormick J, Lalani S, Zhang T, Xu R, Li N, Liu Y, Yang YS, Eiseman M, Shim JH, Hameed M, Healey JH, Bostrom MP, Landau DA, Greenblatt MB. 2018. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 562:133–139. https://doi.org/10.1038/s41586-018-0554-8.
  • Zhao H, Feng J, Ho TV, Grimes W, Urata M, Chai Y. 2015. The suture provides a niche for mesenchymal stem cells of craniofacial bones. Nat Cell Biol 17:386–396. https://doi.org/10.1038/ncb3139.
  • Lana-Elola E, Rice R, Grigoriadis AE, Rice DP. 2007. Cell fate specification during calvarial bone and suture development. Dev Biol 311:335–346. https://doi.org/10.1016/j.ydbio.2007.08.028.
  • Fragale A, Tartaglia M, Bernardini S, Di Stasi AM, Di Rocco C, Velardi F, Teti A, Battaglia PA, Migliaccio S. 1999. Decreased proliferation and altered differentiation in osteoblasts from genetically and clinically distinct craniosynostotic disorders. Am J Pathol 154:1465–1477. https://doi.org/10.1016/S0002-9440(10)65401-6.
  • Twigg SR, Wilkie AO. 2015. A genetic-pathophysiological framework for craniosynostosis. Am J Hum Genet 97:359–377. https://doi.org/10.1016/j.ajhg.2015.07.006.
  • Johnson D, Wilkie AO. 2011. Craniosynostosis. Eur J Hum Genet 19:369–376. https://doi.org/10.1038/ejhg.2010.235.
  • Yin L, Du X, Li C, Xu X, Chen Z, Su N, Zhao L, Qi H, Li F, Xue J, Yang J, Jin M, Deng C, Chen L. 2008. A Pro253Arg mutation in fibroblast growth factor receptor 2 (Fgfr2) causes skeleton malformation mimicking human Apert syndrome by affecting both chondrogenesis and osteogenesis. Bone 42:631–643. https://doi.org/10.1016/j.bone.2007.11.019.
  • Shukla V, Coumoul X, Wang RH, Kim HS, Deng CX. 2007. RNA interference and inhibition of MEK-ERK signaling prevent abnormal skeletal phenotypes in a mouse model of craniosynostosis. Nat Genet 39:1145–1150. https://doi.org/10.1038/ng2096.
  • Pfaff MJ, Xue K, Li L, Horowitz MC, Steinbacher DM, Eswarakumar JVP. 2016. FGFR2c-mediated ERK-MAPK activity regulates coronal suture development. Dev Biol 415:242–250. https://doi.org/10.1016/j.ydbio.2016.03.026.
  • Vogiatzi A, Mavrothalassitis G. 2019. Craniofacial, orofacial and dental disorders: the role of the RAS/ERK pathway. Expert Rev Mol Med 21:e2. https://doi.org/10.1017/erm.2019.2.
  • Miraoui H, Marie PJ. 2010. Fibroblast growth factor receptor signaling crosstalk in skeletogenesis. Sci Signal 3:re9. https://doi.org/10.1126/scisignal.3146re9.
  • Ornitz DM, Marie PJ. 2015. Fibroblast growth factor signaling in skeletal development and disease. Genes Dev 29:1463–1486. https://doi.org/10.1101/gad.266551.115.
  • Le Gallic L, Sgouras D, Beal G, Jr, Mavrothalassitis G. 1999. Transcriptional repressor ERF is a Ras/mitogen-activated protein kinase target that regulates cellular proliferation. Mol Cell Biol 19:4121–4133. https://doi.org/10.1128/mcb.19.6.4121.
  • Le Gallic L, Virgilio L, Cohen P, Biteau B, Mavrothalassitis G. 2004. ERF nuclear shuttling, a continuous monitor of Erk activity that links it to cell cycle progression. Mol Cell Biol 24:1206–1218. https://doi.org/10.1128/mcb.24.3.1206-1218.2004.
  • Papadaki C, Alexiou M, Cecena G, Verykokakis M, Bilitou A, Cross JC, Oshima RG, Mavrothalassitis G. 2007. Transcriptional repressor Erf determines extraembryonic ectoderm differentiation. Mol Cell Biol 27:5201–5213. https://doi.org/10.1128/MCB.02237-06.
  • Peraki I, Palis J, Mavrothalassitis G. 2017. The Ets2 repressor factor (Erf) is required for effective primitive and definitive hematopoiesis. Mol Cell Biol 37:e00183-17. https://doi.org/10.1128/MCB.00183-17.
  • Glass GE, O’Hara J, Canham N, Cilliers D, Dunaway D, Fenwick AL, Jeelani NO, Johnson D, Lester T, Lord H, Morton JEV, Nishikawa H, Noons P, Schwiebert K, Shipster C, Taylor-Beadling A, Twigg SRF, Vasudevan P, Wall SA, Wilkie AOM, Wilson LC. 2019. ERF-related craniosynostosis: the phenotypic and developmental profile of a new craniosynostosis syndrome. Am J Med Genet A 179:615–627. https://doi.org/10.1002/ajmg.a.61073.
  • Twigg SR, Vorgia E, McGowan SJ, Peraki I, Fenwick AL, Sharma VP, Allegra M, Zaragkoulias A, Sadighi Akha E, Knight SJ, Lord H, Lester T, Izatt L, Lampe AK, Mohammed SN, Stewart FJ, Verloes A, Wilson LC, Healy C, Sharpe PT, Hammond P, Hughes J, Taylor S, Johnson D, Wall SA, Mavrothalassitis G, Wilkie AO. 2013. Reduced dosage of ERF causes complex craniosynostosis in humans and mice and links ERK1/2 signaling to regulation of osteogenesis. Nat Genet 45:308–313. https://doi.org/10.1038/ng.2539.
  • Clagett-Dame M, DeLuca HF. 2002. The role of vitamin A in mammalian reproduction and embryonic development. Annu Rev Nutr 22:347–381. https://doi.org/10.1146/annurev.nutr.22.010402.102745E.
  • Duester G. 2008. Retinoic acid synthesis and signaling during early organogenesis. Cell 134:921–931. https://doi.org/10.1016/j.cell.2008.09.002.
  • Dersch H, Zile MH. 1993. Induction of normal cardiovascular development in the vitamin A-deprived quail embryo by natural retinoids. Dev Biol 160:424–433. https://doi.org/10.1006/dbio.1993.1318.
  • Dickman ED, Thaller C, Smith SM. 1997. Temporally-regulated retinoic acid depletion produces specific neural crest, ocular and nervous system defects. Development 124:3111–3121. https://doi.org/10.1242/dev.124.16.3111.
  • Lohnes D, Mark M, Mendelsohn C, Dolle P, Dierich A, Gorry P, Gansmuller A, Chambon P. 1994. Function of the retinoic acid receptors (RARs) during development (I). Craniofacial and skeletal abnormalities in RAR double mutants. Development 120:2723–2748. https://doi.org/10.1242/dev.120.10.2723.
  • Mendelsohn C, Lohnes D, Decimo D, Lufkin T, LeMeur M, Chambon P, Mark M. 1994. Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120:2749–2771. https://doi.org/10.1242/dev.120.10.2749.
  • Martinez-Morales PL, Diez del Corral R, Olivera-Martinez I, Quiroga AC, Das RM, Barbas JA, Storey KG, Morales AV. 2011. FGF and retinoic acid activity gradients control the timing of neural crest cell emigration in the trunk. J Cell Biol 194:489–503. https://doi.org/10.1083/jcb.201011077.
  • Sirbu IO, Zhao X, Duester G. 2008. Retinoic acid controls heart anteroposterior patterning by down-regulating Isl1 through the Fgf8 pathway. Dev Dyn 237:1627–1635. https://doi.org/10.1002/dvdy.21570.
  • Geelen JA. 1979. Hypervitaminosis A induced teratogenesis. CRC Crit Rev Toxicol 6:351–375. https://doi.org/10.3109/10408447909043651.
  • Gardner JS, Guyard-Boileau B, Alderman BW, Fernbach SK, Greene C, Mangione EJ. 1998. Maternal exposure to prescription and non-prescription pharmaceuticals or drugs of abuse and risk of craniosynostosis. Int J Epidemiol 27:64–67. https://doi.org/10.1093/ije/27.1.64.
  • Yip JE, Kokich VG, Shepard TH. 1980. The effect of high doses of retinoic acid on prenatal craniofacial development in Macaca nemestrina. Teratology 21:29–38. https://doi.org/10.1002/tera.1420210105.
  • Laue K, Pogoda HM, Daniel PB, van Haeringen A, Alanay Y, von Ameln S, Rachwalski M, Morgan T, Gray MJ, Breuning MH, Sawyer GM, Sutherland-Smith AJ, Nikkels PG, Kubisch C, Bloch W, Wollnik B, Hammerschmidt M, Robertson SP. 2011. Craniosynostosis and multiple skeletal anomalies in humans and zebrafish result from a defect in the localized degradation of retinoic acid. Am J Hum Genet 89:595–606. https://doi.org/10.1016/j.ajhg.2011.09.015.
  • Leitch VD, Dwivedi PP, Anderson PJ, Powell BC. 2013. Retinol-binding protein 4 downregulation during osteogenesis and its localization to non-endocytic vesicles in human cranial suture mesenchymal cells suggest a novel tissue function. Histochem Cell Biol 139:75–87. https://doi.org/10.1007/s00418-012-1011-7.
  • Maclean G, Dolle P, Petkovich M. 2009. Genetic disruption of CYP26B1 severely affects development of neural crest derived head structures, but does not compromise hindbrain patterning. Dev Dyn 238:732–745. https://doi.org/10.1002/dvdy.21878.
  • Ferguson JW, Devarajan M, Atit RP. 2018. Stage-specific roles of Ezh2 and retinoic acid signaling ensure calvarial bone lineage commitment. Dev Biol 443:173–187. https://doi.org/10.1016/j.ydbio.2018.09.014.
  • Draut H, Liebenstein T, Begemann G. 2019. New insights into the control of cell fate choices and differentiation by retinoic acid in cranial, axial and caudal structures. Biomolecules 9:860. https://doi.org/10.3390/biom9120860.
  • Xu Y, Malladi P, Chiou M, Longaker MT. 2007. Isolation and characterization of posterofrontal/sagittal suture mesenchymal cells in vitro. Plast Reconstr Surg 119:819–829. https://doi.org/10.1097/01.prs.0000255540.91987.a0.
  • Aubin JE, Liu F, Malaval L, Gupta AK. 1995. Osteoblast and chondroblast differentiation. Bone 17:77S–83S. https://doi.org/10.1016/8756-3282(95)00183-E.
  • Mercader N, Leonardo E, Piedra ME, Martinez AC, Ros MA, Torres M. 2000. Opposing RA and FGF signals control proximodistal vertebrate limb development through regulation of Meis genes. Development 127:3961–3970. https://doi.org/10.1242/dev.127.18.3961.
  • Probst S, Kraemer C, Demougin P, Sheth R, Martin GR, Shiratori H, Hamada H, Iber D, Zeller R, Zuniga A. 2011. SHH propagates distal limb bud development by enhancing CYP26B1-mediated retinoic acid clearance via AER-FGF signalling. Development 138:1913–1923. https://doi.org/10.1242/dev.063966.
  • Deng MJ, Jin Y, Shi JN, Lu HB, Liu Y, He DW, Nie X, Smith AJ. 2004. Multilineage differentiation of ectomesenchymal cells isolated from the first branchial arch. Tissue Eng 10:1597–1606. https://doi.org/10.1089/ten.2004.10.1597.
  • Malaval L, Gupta AK, Aubin JE. 1995. Leukemia inhibitory factor inhibits osteogenic differentiation in rat calvaria cell cultures. Endocrinology 136:1411–1418. https://doi.org/10.1210/endo.136.4.7895651.
  • Maruyama T, Jeong J, Sheu TJ, Hsu W. 2016. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration. Nat Commun 7:10526. https://doi.org/10.1038/ncomms10526.
  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317. https://doi.org/10.1080/14653240600855905.
  • da Silva Meirelles L, Nardi NB. 2003. Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br J Haematol 123:702–711. https://doi.org/10.1046/j.1365-2141.2003.04669.x.
  • Zhu H, Guo ZK, Jiang XX, Li H, Wang XY, Yao HY, Zhang Y, Mao N. 2010. A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nat Protoc 5:550–560. https://doi.org/10.1038/nprot.2009.238.
  • Verykokakis M, Papadaki C, Vorgia E, Le Gallic L, Mavrothalassitis G. 2007. The RAS-dependent ERF control of cell proliferation and differentiation is mediated by c-Myc repression. J Biol Chem 282:30285–30294. https://doi.org/10.1074/jbc.M704428200.
  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550. https://doi.org/10.1073/pnas.0506580102.
  • Brinkley JF, Fisher S, Harris MP, Holmes G, Hooper JE, Jabs EW, Jones KL, Kesselman C, Klein OD, Maas RL, Marazita ML, Selleri L, Spritz RA, van Bakel H, Visel A, Williams TJ, Wysocka J, FaceBase C, Chai Y, FaceBase Consortium. 2016. The FaceBase Consortium: a comprehensive resource for craniofacial researchers. Development 143:2677–2688. https://doi.org/10.1242/dev.135434.
  • Holmes G, Gonzalez-Reiche AS, Lu N, Zhou X, Rivera J, Kriti D, Sebra R, Williams AA, Donovan MJ, Potter SS, Pinto D, Zhang B, van Bakel H, Jabs EW. 2020. Integrated transcriptome and network analysis reveals spatiotemporal dynamics of calvarial suturogenesis. Cell Rep 32:107871. https://doi.org/10.1016/j.celrep.2020.107871.
  • Falker-Gieske C, Mott A, Franzenburg S, Tetens J. 2021. Multi-species transcriptome meta-analysis of the response to retinoic acid in vertebrates and comparative analysis of the effects of retinol and retinoic acid on gene expression in LMH cells. BMC Genomics 22:146. https://doi.org/10.1186/s12864-021-07451-2.
  • Terranova C, Narla ST, Lee YW, Bard J, Parikh A, Stachowiak EK, Tzanakakis ES, Buck MJ, Birkaya B, Stachowiak MK. 2015. Global developmental gene programing involves a nuclear form of fibroblast growth factor receptor-1 (FGFR1). PLoS One 10:e0123380. https://doi.org/10.1371/journal.pone.0123380.
  • Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. 2019. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10:1523. https://doi.org/10.1038/s41467-019-09234-6.
  • Spoorendonk KM, Peterson-Maduro J, Renn J, Trowe T, Kranenbarg S, Winkler C, Schulte-Merker S. 2008. Retinoic acid and Cyp26b1 are critical regulators of osteogenesis in the axial skeleton. Development 135:3765–3774. https://doi.org/10.1242/dev.024034.
  • Roberts C. 2020. Regulating retinoic acid availability during development and regeneration: the role of the CYP26 enzymes. J Dev Biol 8:6. https://doi.org/10.3390/jdb8010006.
  • Pricola KL, Kuhn NZ, Haleem-Smith H, Song Y, Tuan RS. 2009. Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism. J Cell Biochem 108:577–588. https://doi.org/10.1002/jcb.22289.
  • Song HM, Nacamuli RP, Xia W, Bari AS, Shi YY, Fang TD, Longaker MT. 2005. High-dose retinoic acid modulates rat calvarial osteoblast biology. J Cell Physiol 202:255–262. https://doi.org/10.1002/jcp.20115.
  • James AW, Levi B, Xu Y, Carre AL, Longaker MT. 2010. Retinoic acid enhances osteogenesis in cranial suture-derived mesenchymal cells: potential mechanisms of retinoid-induced craniosynostosis. Plast Reconstr Surg 125:1352–1361. https://doi.org/10.1097/PRS.0b013e3181d62980.
  • Gonzalez-Quevedo R, Lee Y, Poss KD, Wilkinson DG. 2010. Neuronal regulation of the spatial patterning of neurogenesis. Dev Cell 18:136–147. https://doi.org/10.1016/j.devcel.2009.11.010.
  • Bao X, Zhang X, Wang L, Wang Z, Huang J, Zhang Q, Ye Y, Liu Y, Chen D, Zuo Y, Liu Q, Xu P, Huang B, Fang J, Lao J, Feng X, Li Y, Kurita R, Nakamura Y, Yu W, Ju C, Huang C, Mohandas N, Li D, Zhao C, Xu X. 2021. Epigenetic inactivation of ERF reactivates gamma-globin expression in beta-thalassemia. Am J Hum Genet 108:709–721. https://doi.org/10.1016/j.ajhg.2021.03.005.
  • Bose R, Karthaus WR, Armenia J, Abida W, Iaquinta PJ, Zhang Z, Wongvipat J, Wasmuth EV, Shah N, Sullivan PS, Doran MG, Wang P, Patruno A, Zhao Y, Zheng D, Schultz N, Sawyers CL, International SU2C/PCF Prostate Cancer Dream Team. 2017. ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature 546:671–675. https://doi.org/10.1038/nature22820.
  • Mayor-Ruiz C, Olbrich T, Drosten M, Lecona E, Vega-Sendino M, Ortega S, Dominguez O, Barbacid M, Ruiz S, Fernandez-Capetillo O. 2018. ERF deletion rescues RAS deficiency in mouse embryonic stem cells. Genes Dev 32:568–576. https://doi.org/10.1101/gad.310086.117.
  • Sumarsono SH, Wilson TJ, Tymms MJ, Venter DJ, Corrick CM, Kola R, Lahoud MH, Papas TS, Seth A, Kola I. 1996. Down’s syndrome-like skeletal abnormalities in Ets2 transgenic mice. Nature 379:534–537. https://doi.org/10.1038/379534a0.
  • Vary CP, Li V, Raouf A, Kitching R, Kola I, Franceschi C, Venanzoni M, Seth A. 2000. Involvement of Ets transcription factors and targets in osteoblast differentiation and matrix mineralization. Exp Cell Res 257:213–222. https://doi.org/10.1006/excr.2000.4879.
  • Lomri A, Lemonnier J, Hott M, de Parseval N, Lajeunie E, Munnich A, Renier D, Marie PJ. 1998. Increased calvaria cell differentiation and bone matrix formation induced by fibroblast growth factor receptor 2 mutations in Apert syndrome. J Clin Invest 101:1310–1317.
  • Holmes G, Rothschild G, Roy UB, Deng CX, Mansukhani A, Basilico C. 2009. Early onset of craniosynostosis in an Apert mouse model reveals critical features of this pathology. Dev Biol 328:273–284. https://doi.org/10.1016/j.ydbio.2009.01.026.
  • Teng CS, Ting MC, Farmer DT, Brockop M, Maxson RE, Crump JG. 2018. Altered bone growth dynamics prefigure craniosynostosis in a zebrafish model of Saethre-Chotzen syndrome. Elife 7:e37024. https://doi.org/10.7554/eLife.37024.
  • Matsushita T, Chan YY, Kawanami A, Balmes G, Landreth GE, Murakami S. 2009. Extracellular signal-regulated kinase 1 (ERK1) and ERK2 play essential roles in osteoblast differentiation and in supporting osteoclastogenesis. Mol Cell Biol 29:5843–5857. https://doi.org/10.1128/MCB.01549-08.
  • Kyono A, Avishai N, Ouyang Z, Landreth GE, Murakami S. 2012. FGF and ERK signaling coordinately regulate mineralization-related genes and play essential roles in osteocyte differentiation. J Bone Miner Metab 30:19–30. https://doi.org/10.1007/s00774-011-0288-2.
  • Tsang EJ, Wu B, Zuk P. 2018. MAPK signaling has stage-dependent osteogenic effects on human adipose-derived stem cells in vitro. Connect Tissue Res 59:129–146. https://doi.org/10.1080/03008207.2017.1313248.
  • Weng Z, Wang C, Zhang C, Xu J, Chai Y, Jia Y, Han P, Wen G. 2019. All-trans retinoic acid promotes osteogenic differentiation and bone consolidation in a rat distraction osteogenesis model. Calcif Tissue Int 104:320–330. https://doi.org/10.1007/s00223-018-0501-6.
  • Cruz ACC, Cardozo F, Magini RS, Simoes CMO. 2019. Retinoic acid increases the effect of bone morphogenetic protein type 2 on osteogenic differentiation of human adipose-derived stem cells. J Appl Oral Sci 27:e20180317. https://doi.org/10.1590/1678-7757-2018-0317.
  • Roa LA, Bloemen M, Carels CEL, Wagener F, Von den Hoff JW. 2019. Retinoic acid disrupts osteogenesis in pre-osteoblasts by down-regulating WNT signaling. Int J Biochem Cell Biol 116:105597. https://doi.org/10.1016/j.biocel.2019.105597.
  • Bi W, Gu Z, Zheng Y, Zhang X, Guo J, Wu G. 2013. Heterodimeric BMP-2/7 antagonizes the inhibition of all-trans retinoic acid and promotes the osteoblastogenesis. PLoS One 8:e78198. https://doi.org/10.1371/journal.pone.0078198.
  • Lind T, Sundqvist A, Hu L, Pejler G, Andersson G, Jacobson A, Melhus H. 2013. Vitamin a is a negative regulator of osteoblast mineralization. PLoS One 8:e82388. https://doi.org/10.1371/journal.pone.0082388.
  • Cristofalo VJ, Allen RG, Pignolo RJ, Martin BG, Beck JC. 1998. Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc Natl Acad Sci U S A U S A 95:10614–10619. https://doi.org/10.1073/pnas.95.18.10614.
  • Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. 2008. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180:2581–2587. https://doi.org/10.4049/jimmunol.180.4.2581.
  • Kastrinaki MC, Andreakou I, Charbord P, Papadaki HA. 2008. Isolation of human bone marrow mesenchymal stem cells using different membrane markers: comparison of colony/cloning efficiency, differentiation potential, and molecular profile. Tissue Eng Part C Methods 14:333–339. https://doi.org/10.1089/ten.tec.2008.0173.
  • Russell KC, Phinney DG, Lacey MR, Barrilleaux BL, Meyertholen KE, O'Connor KC. 2010. In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells 28:788–798. https://doi.org/10.1002/stem.312.
  • Gregory CA, Gunn WG, Peister A, Prockop DJ. 2004. An alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem 329:77–84. https://doi.org/10.1016/j.ab.2004.02.002.
  • Gruber HE, Somayaji S, Riley F, Hoelscher GL, Norton HJ, Ingram J, Hanley EN, Jr. 2012. Human adipose-derived mesenchymal stem cells: serial passaging, doubling time and cell senescence. Biotech Histochem 87:303–311. https://doi.org/10.3109/10520295.2011.649785.
  • Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. 1991. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279. https://doi.org/10.1016/0022-1759(91)90198-o.
  • Morgan DM. 1998. Tetrazolium (MTT) assay for cellular viability and activity. Methods Mol Biol 79:179–183. https://doi.org/10.1385/0-89603-448-8:179.
  • Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360. https://doi.org/10.1038/nmeth.3317.
  • Anders S, Pyl PT, Huber W. 2015. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169. https://doi.org/10.1093/bioinformatics/btu638.
  • Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616.
  • McCarthy DJ, Chen Y, Smyth GK. 2012. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40:4288–4297. https://doi.org/10.1093/nar/gks042.
  • Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, 3rd, Hao Y, Stoeckius M, Smibert P, Satija R. 2019. Comprehensive integration of single-cell data. Cell 177:1888–1902.e1821. https://doi.org/10.1016/j.cell.2019.05.031.
  • Revelle W. 2019. psych: procedures for psychological, psychometric, and personality research. Northwestern University, Evanston, IL.
  • R Core Team. 2019. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  • Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J. 2019. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 47:W191–W198. https://doi.org/10.1093/nar/gkz369.
  • Gu Z, Eils R, Schlesner M. 2016. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849. https://doi.org/10.1093/bioinformatics/btw313.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.