15
Views
8
CrossRef citations to date
0
Altmetric
Article

Yeast DEAD Box Protein Mss116p Is a Transcription Elongation Factor That Modulates the Activity of Mitochondrial RNA Polymerase

, , , &
Pages 2360-2369 | Received 31 Jan 2014, Accepted 01 Apr 2014, Published online: 20 Mar 2023

REFERENCES

  • Gray MW. 2012. Mitochondrial evolution. Cold Spring Harb. Perspect. Biol. 4:a011403. http://dx.doi.org/10.1101/cshperspect.a011403.
  • Osteryoung KW, Nunnari J. 2003. The division of endosymbiotic organelles. Science 302:1698–1704. http://dx.doi.org/10.1126/science.1082192.
  • Lipinski KA, Kaniak-Golik A, Golik P. 2010. Maintenance and expression of the S. cerevisiae mitochondrial genome–from genetics to evolution and systems biology. Biochim. Biophys. Acta 1797:1086–1098. http://dx.doi.org/10.1016/j.bbabio.2009.12.019.
  • Perocchi F, Jensen LJ, Gagneur J, Ahting U, von Mering C, Bork P, Prokisch H, Steinmetz LM. 2006. Assessing systems properties of yeast mitochondria through an interaction map of the organelle. PLoS Genet. 2:e170. http://dx.doi.org/10.1371/journal.pgen.0020170.
  • Blomain ES, McMahon SB. 2012. Dynamic regulation of mitochondrial transcription as a mechanism of cellular adaptation. Biochim. Biophys. Acta 1819:1075–1079. http://dx.doi.org/10.1016/j.bbagrm.2012.06.004.
  • Woodson JD, Chory J. 2008. Coordination of gene expression between organellar and nuclear genomes. Nat. Rev. Genet. 9:383–395. http://dx.doi.org/10.1038/nrg2348.
  • Szczesny RJ, Borowski LS, Malecki M, Wojcik MA, Stepien PP, Golik P. 2012. RNA degradation in yeast and human mitochondria. Biochim. Biophys. Acta 1819:1027–1034. http://dx.doi.org/10.1016/j.bbagrm.2011.11.010.
  • Rogowska AT, Puchta O, Czarnecka AM, Kaniak A, Stepien PP, Golik P. 2006. Balance between transcription and RNA degradation is vital for Saccharomyces cerevisiae mitochondria: reduced transcription rescues the phenotype of deficient RNA degradation. Mol. Biol. Cell 17:1184–1193. http://dx.doi.org/10.1091/mbc.E05-08-0796.
  • Gagliardi D, Stepien PP, Temperley RJ, Lightowlers RN, Chrzanowska-Lightowlers ZM. 2004. Messenger RNA stability in mitochondria: different means to an end. Trends Genet. 20:260–267. http://dx.doi.org/10.1016/j.tig.2004.04.006.
  • Savkina M, Temiakov D, McAllister WT, Anikin M. 2010. Multiple functions of yeast mitochondrial transcription factor Mtf1p during initiation. J. Biol. Chem. 285:3957–3964. http://dx.doi.org/10.1074/jbc.M109.051003.
  • Fisher RP, Parisi MA, Clayton DA. 1989. Flexible recognition of rapidly evolving promoter sequences by mitochondrial transcription factor 1. Genes Dev. 3:2202–2217. http://dx.doi.org/10.1101/gad.3.12b.2202.
  • Masters BS, Stohl LL, Clayton DA. 1987. Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell 51:89–99. http://dx.doi.org/10.1016/0092-8674(87)90013-4.
  • Malecki M, Jedrzejczak R, Stepien PP, Golik P. 2007. In vitro reconstitution and characterization of the yeast mitochondrial degradosome complex unravels tight functional interdependence. J. Mol. Biol. 372:23–36. http://dx.doi.org/10.1016/j.jmb.2007.06.074.
  • Margossian SP, Li H, Zassenhaus HP, Butow RA. 1996. The DExH box protein Suv3p is a component of a yeast mitochondrial 3′-to-5′ exoribonuclease that suppresses group I intron toxicity. Cell 84:199–209. http://dx.doi.org/10.1016/S0092-8674(00)80975-7.
  • Seraphin B, Simon M, Boulet A, Faye G. 1989. Mitochondrial splicing requires a protein from a novel helicase family. Nature 337:84–87. http://dx.doi.org/10.1038/337084a0.
  • Minczuk M, Dmochowska A, Palczewska M, Stepien PP. 2002. Overexpressed yeast mitochondrial putative RNA helicase Mss116 partially restores proper mtRNA metabolism in strains lacking the Suv3 mtRNA helicase. Yeast 19:1285–1293. http://dx.doi.org/10.1002/yea.906.
  • Markov DA, Savkina M, Anikin M, Del Campo M, Ecker K, Lambowitz AM, De Gnore JP, McAllister WT. 2009. Identification of proteins associated with the yeast mitochondrial RNA polymerase by tandem affinity purification. Yeast 26:423–440. http://dx.doi.org/10.1002/yea.1672.
  • Cordin O, Banroques J, Tanner NK, Linder P. 2006. The DEAD-box protein family of RNA helicases. Gene 367:17–37. http://dx.doi.org/10.1016/j.gene.2005.10.019.
  • Fuller-Pace FV. 2006. DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res. 34:4206–4215. http://dx.doi.org/10.1093/nar/gkl460.
  • Fuller-Pace FV, Ali S. 2008. The DEAD box RNA helicases p68 (Ddx5) and p72 (Ddx17): novel transcriptional co-regulators. Biochem. Soc. Trans. 36:609–612. http://dx.doi.org/10.1042/BST0360609.
  • Niemer I, Schmelzer C, Borner GV. 1995. Overexpression of DEAD box protein pMSS116 promotes ATP-dependent splicing of a yeast group II intron in vitro. Nucleic Acids Res. 23:2966–2972. http://dx.doi.org/10.1093/nar/23.15.2966.
  • Huang HR, Rowe CE, Mohr S, Jiang Y, Lambowitz AM, Perlman PS. 2005. The splicing of yeast mitochondrial group I and group II introns requires a DEAD-box protein with RNA chaperone function. Proc. Natl. Acad. Sci. U. S. A. 102:163–168. http://dx.doi.org/10.1073/pnas.0407896101.
  • Mallam AL, Del Campo M, Gilman B, Sidote DJ, Lambowitz AM. 2012. Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p. Nature 490:121–125. http://dx.doi.org/10.1038/nature11402.
  • Del Campo M, Mohr S, Jiang Y, Jia H, Jankowsky E, Lambowitz AM. 2009. Unwinding by local strand separation is critical for the function of DEAD-box proteins as RNA chaperones. J. Mol. Biol. 389:674–693. http://dx.doi.org/10.1016/j.jmb.2009.04.043.
  • Landick R. 2006. The regulatory roles and mechanism of transcriptional pausing. Biochem. Soc. Trans. 34:1062–1066. http://dx.doi.org/10.1042/BST0341062.
  • Li Z, Wu J, Deleo CJ. 2006. RNA damage and surveillance under oxidative stress. IUBMB Life 58:581–588. http://dx.doi.org/10.1080/15216540600946456.
  • Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • Mookhtiar KA, Peluso PS, Muller DK, Dunn JJ, Coleman JE. 1991. Processivity of T7 RNA polymerase requires the C-terminal Phe882-Ala883-COO- or “foot.” Biochemistry 30:6305–6513.
  • Bonner G, Patra D, Lafer EM, Sousa R. 1992. Mutations in T7 RNA polymerase that support the proposal for a common polymerase active site structure. EMBO J. 11:3767–3775.
  • Gardner LP, Mookhtiar KA, Coleman JE. 1997. Initiation, elongation, and processivity of carboxyl-terminal mutants of T7 RNA polymerase. Biochemistry 36:2908–2918. http://dx.doi.org/10.1021/bi962397i.
  • Kireeva ML, Komissarova N, Waugh DS, Kashlev M. 2000. The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex. J. Biol. Chem. 275:6530–6536. http://dx.doi.org/10.1074/jbc.275.9.6530.
  • Ma K, Temiakov D, Jiang M, Anikin M, McAllister WT. 2002. Major conformational changes occur during the transition from an initiation complex to an elongation complex by T7 RNA polymerase. J. Biol. Chem. 277:43206–43215. http://dx.doi.org/10.1074/jbc.M206658200.
  • Mentesana PE, Chin-Bow ST, Sousa R, McAllister WT. 2000. Characterization of halted T7 RNA polymerase elongation complexes reveals multiple factors that contribute to stability. J. Mol. Biol. 302:1049–1062. http://dx.doi.org/10.1006/jmbi.2000.4114.
  • Milligan JF, Groebe DR, Witherell GW, Uhlenbeck OC. 1987. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15:8783–8798. http://dx.doi.org/10.1093/nar/15.21.8783.
  • Triana-Alonso FJ, Dabrowski M, Wadzack J, Nierhaus KH. 1995. Self-coded 3′-extension of run-off transcripts produces aberrant products during in vitro transcription with T7 RNA polymerase. J. Biol. Chem. 270:6298–6307.
  • Borukhov S, Lee J, Laptenko O. 2005. Bacterial transcription elongation factors: new insights into molecular mechanism of action. Mol. Microbiol. 55:1315–1324. http://dx.doi.org/10.1111/j.1365-2958.2004.04481.x.
  • Roberts JW, Shankar S, Filter JJ. 2008. RNA polymerase elongation factors. Annu. Rev. Microbiol. 62:211–233. http://dx.doi.org/10.1146/annurev.micro.61.080706.093422.
  • Artsimovitch I, Landick R. 2000. Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. Proc. Natl. Acad. Sci. U. S. A. 97:7090–7095. http://dx.doi.org/10.1073/pnas.97.13.7090.
  • Rozovskaya TA, Rechinsky VO, Bibilashvili RS, Karpeisky MY, Tarusova NB, Khomutov RM, Dixon HB. 1984. The mechanism of pyrophosphorolysis of RNA by RNA polymerase. Endowment of RNA polymerase with artificial exonuclease activity. Biochem. J. 224:645–650.
  • Urban S, Urban S, Fischer KP, Tyrrell DL. 2001. Efficient pyrophosphorolysis by a hepatitis B virus polymerase may be a primer-unblocking mechanism. Proc. Natl. Acad. Sci. U. S. A. 98:4984–4989. http://dx.doi.org/10.1073/pnas.091324398.
  • Anand VS, Patel SS. 2006. Transient state kinetics of transcription elongation by T7 RNA polymerase. J. Biol. Chem. 281:35677–35685. http://dx.doi.org/10.1074/jbc.M608180200.
  • Liu F, Putnam A, Jankowsky E. 2008. ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Proc. Natl. Acad. Sci. U. S. A. 105:20209–20214. http://dx.doi.org/10.1073/pnas.0811115106.
  • Del Campo M, Lambowitz AM. 2009. Structure of the yeast DEAD box protein Mss116p reveals two wedges that crimp RNA. Mol. Cell 35:598–609. http://dx.doi.org/10.1016/j.molcel.2009.07.032.
  • Solem A, Zingler N, Pyle AM. 2006. A DEAD protein that activates intron self-splicing without unwinding RNA. Mol. Cell 24:611–617. http://dx.doi.org/10.1016/j.molcel.2006.10.032.
  • Potratz JP, Del Campo M, Wolf RZ, Lambowitz AM, Russell R. 2011. ATP-dependent roles of the DEAD-box protein Mss116p in group II intron splicing in vitro and in vivo. J. Mol. Biol. 411:661–679. http://dx.doi.org/10.1016/j.jmb.2011.05.047.
  • Mohr G, Del Campo M, Mohr S, Yang Q, Jia H, Jankowsky E, Lambowitz AM. 2008. Function of the C-terminal domain of the DEAD-box protein Mss116p analyzed in vivo and in vitro. J. Mol. Biol. 375:1344–1364. http://dx.doi.org/10.1016/j.jmb.2007.11.041.
  • Rodeheffer MS, Boone BE, Bryan AC, Shadel GS. 2001. Nam1p, a protein involved in RNA processing and translation, is coupled to transcription through an interaction with yeast mitochondrial RNA polymerase. J. Biol. Chem. 276:8616–8622. http://dx.doi.org/10.1074/jbc.M009901200.
  • Schubot FD, Chen CJ, Rose JP, Dailey TA, Dailey HA, Wang BC. 2001. Crystal structure of the transcription factor sc-mtTFB offers insights into mitochondrial transcription. Protein Sci. 10:1980–1988. http://dx.doi.org/10.1110/ps.11201.
  • Bonawitz ND, Clayton DA, Shadel GS. 2006. Initiation and beyond: multiple functions of the human mitochondrial transcription machinery. Mol. Cell 24:813–825. http://dx.doi.org/10.1016/j.molcel.2006.11.024.
  • Wang Z, Cotney J, Shadel GS. 2007. Human mitochondrial ribosomal protein MRPL12 interacts directly with mitochondrial RNA polymerase to modulate mitochondrial gene expression. J. Biol. Chem. 282:12610–12618.
  • Litonin D, Sologub M, Shi Y, Savkina M, Anikin M, Falkenberg M, Gustafsson CM, Temiakov D. 2010. Human mitochondrial transcription revisited: only TFAM and TFB2M are required for transcription of the mitochondrial genes in vitro. J. Biol. Chem. 285:18129–18133. http://dx.doi.org/10.1074/jbc.C110.128918.
  • Shi Y, Dierckx A, Wanrooij PH, Wanrooij S, Larsson NG, Wilhelmsson LM, Falkenberg M, Gustafsson CM. 2012. Mammalian transcription factor A is a core component of the mitochondrial transcription machinery. Proc. Natl. Acad. Sci. U. S. A. 109:16510–16515. http://dx.doi.org/10.1073/pnas.1119738109.
  • Campbell CT, Kolesar JE, Kaufman BA. 2012. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim. Biophys. Acta 1819:921–929. http://dx.doi.org/10.1016/j.bbagrm.2012.03.002.
  • Ekstrand MI, Falkenberg M, Rantanen A, Park CB, Gaspari M, Hultenby K, Rustin P, Gustafsson CM, Larsson NG. 2004. Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum. Mol. Genet. 13:935–944. http://dx.doi.org/10.1093/hmg/ddh109.
  • Cheetham GM, Jeruzalmi D, Steitz TA. 1999. Structural basis for initiation of transcription from an RNA polymerase-promoter complex. Nature 399:80–83. http://dx.doi.org/10.1038/19999.
  • Tahirov TH, Temiakov D, Anikin M, Patlan V, McAllister WT, Vassylyev DG, Yokoyama S. 2002. Structure of a T7 RNA polymerase elongation complex at 2.9 A resolution. Nature 420:43–50. http://dx.doi.org/10.1038/nature01129.
  • Toulmé F, Guérin M, Robichon N, Leng M, Rahmouni AR. 1999. In vivo evidence for back and forth oscillations of the transcription elongation complex. EMBO J. 18:5052–5060. http://dx.doi.org/10.1093/emboj/18.18.5052.
  • Kashkina E, Anikin M, Tahirov TH, Kochetkov SN, Vassylyev DG, Temiakov D. 2006. Elongation complexes of Thermus thermophilus RNA polymerase that possess distinct translocation conformations. Nucleic Acids Res. 34:4036–4045. http://dx.doi.org/10.1093/nar/gkl559.
  • Woo HJ, Liu Y, Sousa R. 2008. Molecular dynamics studies of the energetics of translocation in model T7 RNA polymerase elongation complexes. Proteins 73:1021–1036. http://dx.doi.org/10.1002/prot.22134.
  • Hein PP, Palangat M, Landick R. 2011. RNA transcript 3′-proximal sequence affects translocation bias of RNA polymerase. Biochemistry 50:7002–7014. http://dx.doi.org/10.1021/bi200437q.
  • Artsimovitch I, Landick R. 2002. The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand. Cell 109:193–203. http://dx.doi.org/10.1016/S0092-8674(02)00724-9.
  • Park JS, Marr MT, Roberts JW. 2002. E. coli transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 109:757–767. http://dx.doi.org/10.1016/S0092-8674(02)00769-9.
  • Svetlov V, Belogurov GA, Shabrova E, Vassylyev DG, Artsimovitch I. 2007. Allosteric control of the RNA polymerase by the elongation factor RfaH. Nucleic Acids Res. 35:5694–5705. http://dx.doi.org/10.1093/nar/gkm600.
  • Herbert KM, Zhou J, Mooney RA, Porta AL, Landick R, Block SM. 2010. E. coli NusG inhibits backtracking and accelerates pause-free transcription by promoting forward translocation of RNA polymerase. J. Mol. Biol. 399:17–30. http://dx.doi.org/10.1016/j.jmb.2010.03.051.
  • Amiott EA, Jaehning JA. 2006. Mitochondrial transcription is regulated via an ATP “sensing” mechanism that couples RNA abundance to respiration. Mol. Cell 22:329–338. http://dx.doi.org/10.1016/j.molcel.2006.03.031.
  • Gilchrist DA, Fargo DC, Adelman K. 2009. Using ChIP-chip and ChIP-seq to study the regulation of gene expression: genome-wide localization studies reveal widespread regulation of transcription elongation. Methods 48:398–408. http://dx.doi.org/10.1016/j.ymeth.2009.02.024.
  • Minczuk M, He J, Duch AM, Ettema TJ, Chlebowski A, Dzionek K, Nijtmans LG, Huynen MA, Holt IJ. 2011. TEFM (c17orf42) is necessary for transcription of human mtDNA. Nucleic Acids Res. 39:4284–4299. http://dx.doi.org/10.1093/nar/gkq1224.
  • Turk EM, Das V, Seibert RD, Andrulis ED. 2013. The mitochondrial RNA landscape of Saccharomyces cerevisiae. PLoS One 8:e78105. http://dx.doi.org/10.1371/journal.pone.0078105.
  • Rong M, Durbin RK, McAllister WT. 1998. Template strand switching by T7 RNA polymerase. J. Biol. Chem. 273:10253–10260. http://dx.doi.org/10.1074/jbc.273.17.10253.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.