66
Views
15
CrossRef citations to date
0
Altmetric
Article

Cytoplasmic ATXN7L3B Interferes with Nuclear Functions of the SAGA Deubiquitinase Module

, , , , , , , , & show all
Pages 2855-2866 | Received 30 Mar 2016, Accepted 24 Aug 2016, Published online: 18 Mar 2023

REFERENCES

  • Lin Z, Yang H, Kong Q, Li J, Lee SM, Gao B, Dong H, Wei J, Song J, Zhang DD, Fang D. 2012. USP22 antagonizes p53 transcriptional activation by deubiquitinating Sirt1 to suppress cell apoptosis and is required for mouse embryonic development. Mol Cell 46:484–494. http://dx.doi.org/10.1016/j.molcel.2012.03.024.
  • Lan X, Koutelou E, Schibler AC, Chen YC, Grant PA, Dent SY. 2015. Poly(Q) expansions in ATXN7 affect solubility but not activity of the SAGA deubiquitinating module. Mol Cell Biol 35:1777–1787. http://dx.doi.org/10.1128/MCB.01454-14.
  • Glinsky GV. 2006. Genomic models of metastatic cancer: functional analysis of death-from-cancer signature genes reveals aneuploid, anoikis-resistant, metastasis-enabling phenotype with altered cell cycle control and activated Polycomb Group (PcG) protein chromatin silencing pathway. Cell Cycle 5:1208–1216. http://dx.doi.org/10.4161/cc.5.11.2796.
  • Zhang XY, Varthi M, Sykes SM, Phillips C, Warzecha C, Zhu W, Wyce A, Thorne AW, Berger SL, McMahon SB. 2008. The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression. Mol Cell 29:102–111. http://dx.doi.org/10.1016/j.molcel.2007.12.015.
  • Zhao Y, Lang G, Ito S, Bonnet J, Metzger E, Sawatsubashi S, Suzuki E, Le Guezennec X, Stunnenberg HG, Krasnov A, Georgieva SG, Schule R, Takeyama K, Kato S, Tora L, Devys D. 2008. A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Mol Cell 29:92–101. http://dx.doi.org/10.1016/j.molcel.2007.12.011.
  • Lang G, Bonnet J, Umlauf D, Karmodiya K, Koffler J, Stierle M, Devys D, Tora L. 2011. The tightly controlled deubiquitination activity of the human SAGA complex differentially modifies distinct gene regulatory elements. Mol Cell Biol 31:3734–3744. http://dx.doi.org/10.1128/MCB.05231-11.
  • Köhler A, Schneider M, Cabal GG, Nehrbass U, Hurt E. 2008. Yeast Ataxin-7 links histone deubiquitination with gene gating and mRNA export. Nat Cell Biol 10:707–715. http://dx.doi.org/10.1038/ncb1733.
  • Wang L, Dent SY. 2014. Functions of SAGA in development and disease. Epigenomics 6:329–339. http://dx.doi.org/10.2217/epi.14.22.
  • Köhler A, Zimmerman E, Schneider M, Hurt E, Zheng N. 2010. Structural basis for assembly and activation of the heterotetrameric SAGA histone H2B deubiquitinase module. Cell 141:606–617. http://dx.doi.org/10.1016/j.cell.2010.04.026.
  • Samara NL, Datta AB, Berndsen CE, Zhang X, Yao T, Cohen RE, Wolberger C. 2010. Structural insights into the assembly and function of the SAGA deubiquitinating module. Science 328:1025–1029. http://dx.doi.org/10.1126/science.1190049.
  • Koehler C, Bonnet J, Stierle M, Romier C, Devys D, Kieffer B. 2014. DNA binding by Sgf11 protein affects histone H2B deubiquitination by Spt-Ada-Gcn5-acetyltransferase (SAGA). J Biol Chem 289:8989–8999. http://dx.doi.org/10.1074/jbc.M113.500868.
  • Morgan MT, Haj-Yahya M, Ringel AE, Bandi P, Brik A, Wolberger C. 2016. Structural basis for histone H2B deubiquitination by the SAGA DUB module. Science 351:725–728. http://dx.doi.org/10.1126/science.aac5681.
  • Rajakulendran S, Roberts J, Koltzenburg M, Hanna MG, Stewart H. 2013. Deletion of chromosome 12q21 affecting KCNC2 and ATXN7L3B in a family with neurodevelopmental delay and ataxia. J Neurol Neurosurg Psychiatry 84:1255–1257. http://dx.doi.org/10.1136/jnnp-2012-304555.
  • Ellisdon AM, Jani D, Kohler A, Hurt E, Stewart M. 2010. Structural basis for the interaction between yeast Spt-Ada-Gcn5 acetyltransferase (SAGA) complex components Sgf11 and Sus1. J Biol Chem 285:3850–3856. http://dx.doi.org/10.1074/jbc.M109.070839.
  • Glinsky GV, Berezovska O, Glinskii AB. 2005. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 115:1503–1521. http://dx.doi.org/10.1172/JCI23412.
  • Liu YL, Yang YM, Xu H, Dong XS. 2011. Aberrant expression of USP22 is associated with liver metastasis and poor prognosis of colorectal cancer. J Surg Oncol 103:283–289. http://dx.doi.org/10.1002/jso.21802.
  • Atanassov BS, Mohan RD, Lan X, Kuang X, Lu Y, Lin K, Mclvor E, Li W, Zhang Y, Florens L, Byrum SD, Mackintosh SG, Davis T, Koutelou E, Wang L, Tang D, Tackett AJ, Washburn MP, Workman JL, Dent SY. 2016. ATXN7L3 and ENY2 coordinate activity of multiple H2B deubiquitinases important for cellular proliferation and tumor growth. Mol Cell 62:558–571. http://dx.doi.org/10.1016/j.molcel.2016.03.030.
  • Florens L, Washburn MP. 2006. Proteomic analysis by multidimensional protein identification technology. Methods Mol Biol 328:159–175.
  • Jani D, Lutz S, Hurt E, Laskey RA, Stewart M, Wickramasinghe VO. 2012. Functional and structural characterization of the mammalian TREX-2 complex that links transcription with nuclear messenger RNA export. Nucleic Acids Res 40:4562–4573. http://dx.doi.org/10.1093/nar/gks059.
  • Umlauf D, Bonnet J, Waharte F, Fournier M, Stierle M, Fischer B, Brino L, Devys D, Tora L. 2013. The human TREX-2 complex is stably associated with the nuclear pore basket. J Cell Sci 126:2656–2667. http://dx.doi.org/10.1242/jcs.118000.
  • Köhler A, Pascual-Garcia P, Llopis A, Zapater M, Posas F, Hurt E, Rodriguez-Navarro S. 2006. The mRNA export factor Sus1 is involved in Spt/Ada/Gcn5 acetyltransferase-mediated H2B deubiquitinylation through its interaction with Ubp8 and Sgf11. Mol Biol Cell 17:4228–4236. http://dx.doi.org/10.1091/mbc.E06-02-0098.
  • Zhang Y, Yao L, Zhang X, Ji H, Wang L, Sun S, Pang D. 2011. Elevated expression of USP22 in correlation with poor prognosis in patients with invasive breast cancer. J Cancer Res Clin Oncol 137:1245–1253. http://dx.doi.org/10.1007/s00432-011-0998-9.
  • Brown AM, Jeltsch JM, Roberts M, Chambon P. 1984. Activation of pS2 gene transcription is a primary response to estrogen in the human breast cancer cell line MCF-7. Proc Natl Acad Sci U S A 81:6344–6348. http://dx.doi.org/10.1073/pnas.81.20.6344.
  • Lin CY, Strom A, Vega VB, Kong SL, Yeo AL, Thomsen JS, Chan WC, Doray B, Bangarusamy DK, Ramasamy A, Vergara LA, Tang S, Chong A, Bajic VB, Miller LD, Gustafsson JA, Liu ET. 2004. Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells. Genome Biol 5:R66. http://dx.doi.org/10.1186/gb-2004-5-9-r66.
  • Tan JY, Vance KW, Varela MA, Sirey T, Watson LM, Curtis HJ, Marinello M, Alves S, Steinkraus BR, Cooper S, Nesterova T, Brockdorff N, Fulga TA, Brice A, Sittler A, Oliver PL, Wood MJ, Ponting CP, Marques AC. 2014. Cross-talking noncoding RNAs contribute to cell-specific neurodegeneration in SCA7. Nat Struct Mol Biol 21:955–961. http://dx.doi.org/10.1038/nsmb.2902.
  • Ning Z, Wang A, Liang J, Xie Y, Liu J, Feng L, Yan Q, Wang Z. 2014. USP22 promotes the G1/S phase transition by upregulating FoxM1 expression via beta-catenin nuclear localization and is associated with poor prognosis in stage II pancreatic ductal adenocarcinoma. Int J Oncol 45:1594–1608.
  • Liang J, Zhang X, Xie S, Zhou X, Shi Q, Hu J, Wang W, Qi W, Yu R. 2014. Ubiquitin-specific protease 22: a novel molecular biomarker in glioma prognosis and therapeutics. Med Oncol 31:899. http://dx.doi.org/10.1007/s12032-014-0899-2.
  • Yang M, Liu YD, Wang YY, Liu TB, Ge TT, Lou G. 2014. Ubiquitin-specific protease 22: a novel molecular biomarker in cervical cancer prognosis and therapeutics. Tumour Biol 35:929–934. http://dx.doi.org/10.1007/s13277-013-1121-4.
  • Piao S, Liu Y, Hu J, Guo F, Ma J, Sun Y, Zhang B. 2012. USP22 is useful as a novel molecular marker for predicting disease progression and patient prognosis of oral squamous cell carcinoma. PLoS One 7:e42540. http://dx.doi.org/10.1371/journal.pone.0042540.
  • Tang B, Liang X, Tang F, Zhang J, Zeng S, Jin S, Zhou L, Kudo Y, Qi G. 2015. Expression of USP22 and Survivin is an indicator of malignant behavior in hepatocellular carcinoma. Int J Oncol 47:2208–2216.
  • He Y, Jin YJ, Zhang YH, Meng HX, Zhao BS, Jiang Y, Zhu JW, Liang GY, Kong D, Jin XM. 2015. Ubiquitin-specific peptidase 22 overexpression may promote cancer progression and poor prognosis in human gastric carcinoma. Transl Res 165:407–416. http://dx.doi.org/10.1016/j.trsl.2014.09.005.
  • Zhang XY, Pfeiffer HK, Thorne AW, McMahon SB. 2008. USP22, an hSAGA subunit and potential cancer stem cell marker, reverses the polycomb-catalyzed ubiquitylation of histone H2A. Cell Cycle 7:1522–1524. http://dx.doi.org/10.4161/cc.7.11.5962.
  • Atanassov BS, Evrard YA, Multani AS, Zhang Z, Tora L, Devys D, Chang S, Dent SY. 2009. Gcn5 and SAGA regulate shelterin protein turnover and telomere maintenance. Mol Cell 35:352–364. http://dx.doi.org/10.1016/j.molcel.2009.06.015.
  • Atanassov BS, Dent SY. 2011. USP22 regulates cell proliferation by deubiquitinating the transcriptional regulator FBP1. EMBO Rep 12:924–930. http://dx.doi.org/10.1038/embor.2011.140.
  • Ao N, Liu Y, Feng H, Bian X, Li Z, Gu B, Zhao X. 2014. Ubiquitin-specific peptidase USP22 negatively regulates the STAT signaling pathway by deubiquitinating SIRT1. Cell Physiol Biochem 33:1863–1875. http://dx.doi.org/10.1159/000362964.
  • Kishi S, Wulf G, Nakamura M, Lu KP. 2001. Telomeric protein Pin2/TRF1 induces mitotic entry and apoptosis in cells with short telomeres and is down-regulated in human breast tumors. Oncogene 20:1497–1508. http://dx.doi.org/10.1038/sj.onc.1204229.
  • Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, Lin Y, Yao J, Shi J, Kang T, Lorkiewicz P, St Clair D, Hung MC, Evers BM, Zhou BP. 2013. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23:316–331. http://dx.doi.org/10.1016/j.ccr.2013.01.022.
  • Yuan H, Su L, Chen WY. 2013. The emerging and diverse roles of sirtuins in cancer: a clinical perspective. Onco Targets Ther 6:1399–1416.
  • Armakolas A, Stathopoulos GP, Nezos A, Theos A, Stathaki M, Koutsilieris M. 2012. Subdivision of molecularly-classified groups by new gene signatures in breast cancer patients. Oncol Rep 28:2255–2263.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.