168
Views
10
CrossRef citations to date
0
Altmetric
Article

Regulation of Cellular Dynamics and Chromosomal Binding Site Preference of Linker Histones H1.0 and H1.X

ORCID Icon, , &
Pages 2681-2696 | Received 02 Apr 2016, Accepted 08 Aug 2016, Published online: 17 Mar 2023

REFERENCES

  • Andrews AJ, Chen X, Zevin A, Stargell LA, Luger K. 2010. The histone chaperone Nap1 promotes nucleosome assembly by eliminating nonnucleosomal histone DNA interactions. Mol Cell 37:834–842. http://dx.doi.org/10.1016/j.molcel.2010.01.037.
  • Nagata K, Kawase H, Handa H, Yano K, Yamasaki M, Ishimi Y, Okuda A, Kikuchi A, Matsumoto K. 1995. Replication factor encoded by a putative oncogene, set, associated with myeloid leukemogenesis. Proc Natl Acad Sci U S A 92:4279–4283. http://dx.doi.org/10.1073/pnas.92.10.4279.
  • Okuwaki M, Iwamatsu A, Tsujimoto M, Nagata K. 2001. Identification of nucleophosmin/B23, an acidic nucleolar protein, as a stimulatory factor for in vitro replication of adenovirus DNA complexed with viral basic core proteins. J Mol Biol 311:41–55. http://dx.doi.org/10.1006/jmbi.2001.4812.
  • Kato K, Okuwaki M, Nagata K. 2011. Role of template activating factor-I as a chaperone in linker histone dynamics. J Cell Sci 124:3254–3265. http://dx.doi.org/10.1242/jcs.083139.
  • Gadad SS, Senapati P, Syed SH, Rajan RE, Shandilya J, Swaminathan V, Chatterjee S, Colombo E, Dimitrov S, Pelicci PG, Ranga U, Kundu TK. 2011. The multifunctional protein nucleophosmin (NPM1) is a human linker histone H1 chaperone. Biochemistry 50:2780–2789. http://dx.doi.org/10.1021/bi101835j.
  • Shintomi K, Iwabuchi M, Saeki H, Ura K, Kishimoto T, Ohsumi K. 2005. Nucleosome assembly protein-1 is a linker histone chaperone in Xenopus eggs. Proc Natl Acad Sci U S A 102:8210–8215. http://dx.doi.org/10.1073/pnas.0500822102.
  • Kepert JF, Mazurkiewicz J, Heuvelman GL, Toth KF, Rippe K. 2005. NAP1 modulates binding of linker histone H1 to chromatin and induces an extended chromatin fiber conformation. J Biol Chem 280:34063–34072. http://dx.doi.org/10.1074/jbc.M507322200.
  • Kondili K, Tsolas O, Papamarcaki T. 1996. Selective interaction between parathymosin and histone H1. Eur J Biochem 242:67–74. http://dx.doi.org/10.1111/j.1432-1033.1996.0067r.x.
  • Karetsou Z, Sandaltzopoulos R, Frangou-Lazaridis M, Lai CY, Tsolas O, Becker PB, Papamarcaki T. 1998. Prothymosin alpha modulates the interaction of histone H1 with chromatin. Nucleic Acids Res 26:3111–3118. http://dx.doi.org/10.1093/nar/26.13.3111.
  • Erard MS, Belenguer P, Caizergues-Ferrer M, Pantaloni A, Amalric F. 1988. A major nucleolar protein, nucleolin, induces chromatin decondensation by binding to histone H1. Eur J Biochem 175:525–530. http://dx.doi.org/10.1111/j.1432-1033.1988.tb14224.x.
  • Stasevich TJ, Mueller F, Brown DT, McNally JG. 2010. Dissecting the binding mechanism of the linker histone in live cells: an integrated FRAP analysis. EMBO J 29:1225–1234. http://dx.doi.org/10.1038/emboj.2010.24.
  • Zhou BR, Jiang J, Feng H, Ghirlando R, Xiao TS, Bai Y. 2015. Structural mechanisms of nucleosome recognition by linker histones. Mol Cell 59:628–638. http://dx.doi.org/10.1016/j.molcel.2015.06.025.
  • Lu X, Hamkalo B, Parseghian MH, Hansen JC. 2009. Chromatin condensing functions of the linker histone C-terminal domain are mediated by specific amino acid composition and intrinsic protein disorder. Biochemistry 48:164–172. http://dx.doi.org/10.1021/bi801636y.
  • Roque A, Iloro I, Ponte I, Arrondo JLR, Suau P. 2005. DNA-induced secondary structure of the carboxyl-terminal domain of histone H1. J Biol Chem 280:32141–32147. http://dx.doi.org/10.1074/jbc.M505636200.
  • Caterino TL, Fang H, Hayes JJ. 2011. Nucleosome linker DNA contacts and induces specific folding of the intrinsically disordered H1 carboxyl-terminal domain. Mol Cell Biol 31:2341–2348. http://dx.doi.org/10.1128/MCB.05145-11.
  • Allan J, Hartman PG, Crane-Robinson C, Aviles FX. 1980. The structure of histone H1 and its location in chromatin. Nature 288:675–679. http://dx.doi.org/10.1038/288675a0.
  • Raghuram N, Carrero G, Th'ng J, Hendzel MJ. 2009. Molecular dynamics of histone H1. Biochem Cell Biol 87:189–206. http://dx.doi.org/10.1139/O08-127.
  • Sirotkin AM, Edelmann W, Cheng G, Klein-Szanto A, Kucherlapati R, Skoultchi AI. 1995. Mice develop normally without the H1(0) linker histone. Proc Natl Acad Sci U S A 92:6434–6438. http://dx.doi.org/10.1073/pnas.92.14.6434.
  • Lin Q, Sirotkin A, Skoultchi AI. 2000. Normal spermatogenesis in mice lacking the testis-specific linker histone H1t. Mol Cell Biol 20:2122–2128. http://dx.doi.org/10.1128/MCB.20.6.2122-2128.2000.
  • Fan Y, Nikitina T, Morin-Kensicki EM, Zhao J, Magnuson TR, Woodcock CL, Skoultchi AI. 2003. H1 linker histones are essential for mouse development and affect nucleosome spacing in vivo. Mol Cell Biol 23:4559–4572. http://dx.doi.org/10.1128/MCB.23.13.4559-4572.2003.
  • Lin Q, Inselman A, Han X, Xu H, Zhang W, Handel MA, Skoultchi AI. 2004. Reductions in linker histone levels are tolerated in developing spermatocytes but cause changes in specific gene expression. J Biol Chem 279:23525–23535. http://dx.doi.org/10.1074/jbc.M400925200.
  • Sancho M, Diani E, Beato M, Jordan A. 2008. Depletion of human histone H1 variants uncovers specific roles in gene expression and cell growth. PLoS Genet 4:e1000227. http://dx.doi.org/10.1371/journal.pgen.1000227.
  • Clausell J, Happel N, Hale TK, Doenecke D, Beato M. 2009. Histone H1 subtypes differentially modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/SNF or NURF. PLoS One 4:e0007243.
  • Th'ng JP, Sung R, Ye M, Hendzel MJ. 2005. H1 family histones in the nucleus. Control of binding and localization by the C-terminal domain. J Biol Chem 280:27809–27814.
  • Orrego M, Ponte I, Roque A, Buschati N, Mora X, Suau P. 2007. Differential affinity of mammalian histone H1 somatic subtypes for DNA and chromatin. BMC Biol 5:22. http://dx.doi.org/10.1186/1741-7007-5-22.
  • Takata H, Matsunaga S, Morimoto A, Ono-Maniwa R, Uchiyama S, Fukui K. 2007. H1.X with different properties from other linker histones is required for mitotic progression. FEBS Lett 581:3783–3788. http://dx.doi.org/10.1016/j.febslet.2007.06.076.
  • Mayor R, Izquierdo-Bouldstridge A, Millan-Arino L, Bustillos A, Sampaio C, Luque N, Jordan A. 2015. Genome distribution of replication-independent histone H1 variants shows H1.0 associated with nucleolar domains and H1X associated with RNA polymerase II-enriched regions. J Biol Chem 290:7474–7491. http://dx.doi.org/10.1074/jbc.M114.617324.
  • Okuwaki M, Kato K, Shimahara H, Tate S, Nagata K. 2005. Assembly and disassembly of nucleosome core particles containing histone variants by human nucleosome assembly protein I. Mol Cell Biol 25:10639–10651. http://dx.doi.org/10.1128/MCB.25.23.10639-10651.2005.
  • Okuwaki M, Sumi A, Hisaoka M, Saotome-Nakamura A, Akashi S, Nishimura Y, Nagata K. 2012. Function of homo- and hetero-oligomers of human nucleoplasmin/nucleophosmin family proteins NPM1, NPM2 and NPM3 during sperm chromatin remodeling. Nucleic Acids Res 40:4861–4878. http://dx.doi.org/10.1093/nar/gks162.
  • Nagata K, Saito S, Okuwaki M, Kawase H, Furuya A, Kusano A, Hanai N, Okuda A, Kikuchi A. 1998. Cellular localization and expression of template-activating factor I in different cell types. Exp Cell Res 240:274–281. http://dx.doi.org/10.1006/excr.1997.3930.
  • Hisaoka M, Ueshima S, Murano K, Nagata K, Okuwaki M. 2010. Regulation of nucleolar chromatin by B23/nucleophosmin jointly depends upon its RNA binding activity and transcription factor UBF. Mol Cell Biol 30:4952–4964. http://dx.doi.org/10.1128/MCB.00299-10.
  • Murano K, Okuwaki M, Hisaoka M, Nagata K. 2008. Transcription regulation of the rRNA gene by a multifunctional nucleolar protein, B23/nucleophosmin, through its histone chaperone activity. Mol Cell Biol 28:3114–3126. http://dx.doi.org/10.1128/MCB.02078-07.
  • Stoldt S, Wenzel D, Schulze E, Doenecke D, Happel N. 2007. G1 phase-dependent nucleolar accumulation of human histone H1x. Biol Cell 99:541–552. http://dx.doi.org/10.1042/BC20060117.
  • Catez F, Ueda T, Bustin M. 2006. Determinants of histone H1 mobility and chromatin binding in living cells. Nat Struct Mol Biol 13:305–310. http://dx.doi.org/10.1038/nsmb1077.
  • George EM, Brown DT. 2010. Prothymosin alpha is a component of a linker histone chaperone. FEBS Lett 584:2833–2836. http://dx.doi.org/10.1016/j.febslet.2010.04.065.
  • Oberg C, Belikov S. 2012. The N-terminal domain determines the affinity and specificity of H1 binding to chromatin. Biochem Biophys Res Commun 420:321–324. http://dx.doi.org/10.1016/j.bbrc.2012.02.157.
  • Little RD, Braaten DC. 1989. Genomic organization of human 5 S rDNA and sequence of one tandem repeat. Genomics 4:376–383. http://dx.doi.org/10.1016/0888-7543(89)90345-5.
  • Pavelitz T, Rusche L, Matera AG, Scharf JM, Weiner AM. 1995. Concerted evolution of the tandem array encoding primate U2 snRNA occurs in situ, without changing the cytological context of the RNU2 locus. EMBO J 14:169–177.
  • Hori T, Hosokawa M. 2010. DNA methylation and its involvement in carboxylesterase 1A1 (CES1A1) gene expression. Xenobiotica 40:119–128. http://dx.doi.org/10.3109/00498250903431794.
  • Lu X, Hansen JC. 2004. Identification of specific functional subdomains within the linker histone H10 C-terminal domain. J Biol Chem 279:8701–8707. http://dx.doi.org/10.1074/jbc.M311348200.
  • Brown DT, Izard T, Misteli T. 2006. Mapping the interaction surface of linker histone H1(0) with the nucleosome of native chromatin in vivo. Nat Struct Mol Biol 13:250–255. http://dx.doi.org/10.1038/nsmb1050.
  • Contreras A, Hale TK, Stenoien DL, Rosen JM, Mancini MA, Herrera RE. 2003. The dynamic mobility of histone H1 is regulated by cyclin/CDK phosphorylation. Mol Cell Biol 23:8626–8636. http://dx.doi.org/10.1128/MCB.23.23.8626-8636.2003.
  • Flanagan TW, Files JK, Casano KR, George EM, Brown DT. 2016. Photobleaching studies reveal that a single amino acid polymorphism is responsible for the differential binding affinities of linker histone subtypes H1.1 and H1.5. Biol Open 5:372–380. http://dx.doi.org/10.1242/bio.016733.
  • Talasz H, Sapojnikova N, Helliger W, Lindner H, Puschendorf B. 1998. In vitro binding of H1 histone subtypes to nucleosomal organized mouse mammary tumor virus long terminal repeat promotor. J Biol Chem 273:32236–32243. http://dx.doi.org/10.1074/jbc.273.48.32236.
  • Meergans T, Albig W, Doenecke D. 1997. Varied expression patterns of human H1 histone genes in different cell lines. DNA Cell Biol 16:1041–1049. http://dx.doi.org/10.1089/dna.1997.16.1041.
  • McArthur M, Thomas JO. 1996. A preference of histone H1 for methylated DNA. EMBO J 15:1705–1714.
  • Nightingale K, Wolffe AP. 1995. Methylation at CpG sequences does not influence histone H1 binding to a nucleosome including a Xenopus borealis 5 S rRNA gene. J Biol Chem 270:4197–4200. http://dx.doi.org/10.1074/jbc.270.9.4197.
  • Gilbert N, Thomson I, Boyle S, Allan J, Ramsahoye B, Bickmore WA. 2007. DNA methylation affects nuclear organization, histone modifications, and linker histone binding but not chromatin compaction. J Cell Biol 177:401–411. http://dx.doi.org/10.1083/jcb.200607133.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.