78
Views
58
CrossRef citations to date
0
Altmetric
Article

Regulated Proteolysis of NOTCH2 and NOTCH3 Receptors by ADAM10 and Presenilins

, , , , , , & show all
Pages 2822-2832 | Received 15 Feb 2014, Accepted 08 May 2014, Published online: 20 Mar 2023

REFERENCES

  • Artavanis-Tsakonas S, Rand MD, Lake RJ. 1999. Notch signaling: cell fate control and signal integration in development. Science 284:770–776. http://dx.doi.org/10.1126/science.284.5415.770.
  • van Tetering G, van Diest P, Verlaan I, van der Wall E, Kopan R, Vooijs M. 2009. Metalloprotease ADAM10 is required for Notch1 site 2 cleavage. J. Biol. Chem. 284:31018–31027. http://dx.doi.org/10.1074/jbc.M109.006775.
  • Kopan R, Ilagan MX. 2009. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233. http://dx.doi.org/10.1016/j.cell.2009.03.045.
  • Sanchez-Irizarry C, Carpenter AC, Weng AP, Pear WS, Aster JC, Blacklow SC. 2004. Notch subunit heterodimerization and prevention of ligand-independent proteolytic activation depend, respectively, on a novel domain and the LNR repeats. Mol. Cell. Biol. 24:9265–9273. http://dx.doi.org/10.1128/MCB.24.21.9265-9273.2004.
  • De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, Schroeter EH, Schrijvers V, Wolfe MS, Ray WJ, Goate A, Kopan R. 1999. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398:518–522. http://dx.doi.org/10.1038/19083.
  • Donoviel DB, Hadjantonakis AK, Ikeda M, Zheng H, Hyslop PS, Bernstein A. 1999. Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev. 13:2801–2810. http://dx.doi.org/10.1101/gad.13.21.2801.
  • Hamada Y, Kadokawa Y, Okabe M, Ikawa M, Coleman JR, Tsujimoto Y. 1999. Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality. Development 126:3415–3424.
  • Krebs LT, Xue Y, Norton CR, Sundberg JP, Beatus P, Lendahl U, Joutel A, Gridley T. 2003. Characterization of Notch3-deficient mice: normal embryonic development and absence of genetic interactions with a Notch1 mutation. Genesis 37:139–143. http://dx.doi.org/10.1002/gene.10241.
  • Saxena MT, Schroeter EH, Mumm JS, Kopan R. 2001. Murine notch homologs (N1-4) undergo presenilin-dependent proteolysis. J. Biol. Chem. 276:40268–40273. http://dx.doi.org/10.1074/jbc.M107234200.
  • Mizutani T, Taniguchi Y, Aoki T, Hashimoto N, Honjo T. 2001. Conservation of the biochemical mechanisms of signal transduction among mammalian Notch family members. Proc. Natl. Acad. Sci. U. S. A. 98:9026–9031. http://dx.doi.org/10.1073/pnas.161269998.
  • Steiner H, Capell A, Leimer U, Haass C. 1999. Genes and mechanisms involved in beta-amyloid generation and Alzheimer's disease. Eur. Arch. Psychiatry Clin. Neurosci. 249:266–270. http://dx.doi.org/10.1007/s004060050098.
  • Zhang Z, Nadeau P, Song W, Donoviel D, Yuan M, Bernstein A, Yankner BA. 2000. Presenilins are required for gamma-secretase cleavage of beta-APP and transmembrane cleavage of Notch-1. Nat. Cell Biol. 2:463–465. http://dx.doi.org/10.1038/35017108.
  • Herreman A, Serneels L, Annaert W, Collen D, Schoonjans L, De Strooper B. 2000. Total inactivation of gamma-secretase activity in presenilin-deficient embryonic stem cells. Nat. Cell Biol. 2:461–462. http://dx.doi.org/10.1038/35017105.
  • Bozkulak EC, Weinmaster G. 2009. Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling. Mol. Cell. Biol. 29:5679–5695. http://dx.doi.org/10.1128/MCB.00406-09.
  • Saito T, Chiba S, Ichikawa M, Kunisato A, Asai T, Shimizu K, Yamaguchi T, Yamamoto G, Seo S, Kumano K, Nakagami-Yamaguchi E, Hamada Y, Aizawa S, Hirai H. 2003. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity 18:675–685. http://dx.doi.org/10.1016/S1074-7613(03)00111-0.
  • Gibb DR, El Shikh M, Kang DJ, Rowe WJ, El Sayed R, Cichy J, Yagita H, Tew JG, Dempsey PJ, Crawford HC, Conrad DH. 2010. ADAM10 is essential for Notch2-dependent marginal zone B cell development and CD23 cleavage in vivo. J. Exp. Med. 207:623–635. http://dx.doi.org/10.1084/jem.20091990.
  • Joutel A, Andreux F, Gaulis S, Domenga V, Cecillon M, Battail N, Piga N, Chapon F, Godfrain C, Tournier-Lasserve E. 2000. The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J. Clin. Invest. 105:597–605. http://dx.doi.org/10.1172/JCI8047.
  • Lardelli M, Dahlstrand J, Lendahl U. 1994. The novel Notch homologue mouse Notch 3 lacks specific epidermal growth factor-repeats and is expressed in proliferating neuroepithelium. Mech. Dev. 46:123–136. http://dx.doi.org/10.1016/0925-4773(94)90081-7.
  • van Tetering G, Vooijs M. 2011. Proteolytic cleavage of Notch: “HIT and RUN”. Curr. Mol. Med. 11:255–269. http://dx.doi.org/10.2174/156652411795677972.
  • Penton AL, Leonard LD, Spinner NB. 2012. Notch signaling in human development and disease. Semin. Cell Dev. Biol. 23:450–457. http://dx.doi.org/10.1016/j.semcdb.2012.01.010.
  • McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, Spinner NB. 2006. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am. J. Hum. Genet. 79:169–173. http://dx.doi.org/10.1086/505332.
  • Simpson MA, Irving MD, Asilmaz E, Gray MJ, Dafou D, Elmslie FV, Mansour S, Holder SE, Brain CE, Burton BK, Kim KH, Pauli RM, Aftimos S, Stewart H, Kim CA, Holder-Espinasse M, Robertson SP, Drake WM, Trembath RC. 2011. Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nat. Genet. 43:303–305. http://dx.doi.org/10.1038/ng.779.
  • Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, Grossfeld PD, Srivastava D. 2005. Mutations in NOTCH1 cause aortic valve disease. Nature 437:270–274. http://dx.doi.org/10.1038/nature03940.
  • McKellar SH, Tester DJ, Yagubyan M, Majumdar R, Ackerman MJ, Sundt TMIII. 2007. Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. J. Thorac. Cardiovasc. Surg. 134:290–296. http://dx.doi.org/10.1016/j.jtcvs.2007.02.041.
  • Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC. 2004. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306:269–271. http://dx.doi.org/10.1126/science.1102160.
  • Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, Sklar J. 1991. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66:649–661. http://dx.doi.org/10.1016/0092-8674(91)90111-B.
  • Egloff AM, Grandis JR. 2012. Molecular pathways: context-dependent approaches to Notch targeting as cancer therapy. Clin. Cancer Res. 18:5188–5195. http://dx.doi.org/10.1158/1078-0432.CCR-11-2258.
  • Parr C, Watkins G, Jiang WG. 2004. The possible correlation of Notch-1 and Notch-2 with clinical outcome and tumour clinicopathological parameters in human breast cancer. Int. J. Mol. Med. 14:779–786. http://dx.doi.org/10.3892/ijmm.14.5.779.
  • McAuliffe SM, Morgan SL, Wyant GA, Tran LT, Muto KW, Chen YS, Chin KT, Partridge JC, Poole BB, Cheng KH, Daggett JJr, Cullen K, Kantoff E, Hasselbatt K, Berkowitz J, Muto MG, Berkowitz RS, Aster JC, Matulonis UA, Dinulescu DM. 2012. Targeting Notch, a key pathway for ovarian cancer stem cells, sensitizes tumors to platinum therapy. Proc. Natl. Acad. Sci. U. S. A. 109:E2939–E2948. http://dx.doi.org/10.1073/pnas.1206400109.
  • Wang T, Holt CM, Xu C, Ridley C, Jones RPO, Baron M, Trump D. 2007. Notch3 activation modulates cell growth behaviour and cross-talk to Wnt/TCF signalling pathway. Cell Signal. 19:2458–2467. http://dx.doi.org/10.1016/j.cellsig.2007.07.019.
  • Hahn S, Bruning T, Ness J, Czirr E, Baches S, Gijsen H, Korth C, Pietrzik CU, Bulic B, Weggen S. 2011. Presenilin-1 but not amyloid precursor protein mutations present in mouse models of Alzheimer's disease attenuate the response of cultured cells to gamma-secretase modulators regardless of their potency and structure. J. Neurochem. 116:385–395. http://dx.doi.org/10.1111/j.1471-4159.2010.07118.x.
  • Garcia-Ojeda ME, Klein Wolterink RG, Lemaitre F, Richard-Le Goff O, Hasan M, Hendriks RW, Cumano A, Di Santo JP. 2013. GATA-3 promotes T-cell specification by repressing B-cell potential in pro-T cells in mice. Blood 121:1749–1759. http://dx.doi.org/10.1182/blood-2012-06-440065.
  • Sahin U, Weskamp G, Kelly K, Zhou HM, Higashiyama S, Peschon J, Hartmann D, Saftig P, Blobel CP. 2004. Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J. Cell Biol. 164:769–779. http://dx.doi.org/10.1083/jcb.200307137.
  • Tokumaru S, Higashiyama S, Endo T, Nakagawa T, Miyagawa JI, Yamamori K, Hanakawa Y, Ohmoto H, Yoshino K, Shirakata Y, Matsuzawa Y, Hashimoto K, Taniguchi N. 2000. Ectodomain shedding of epidermal growth factor receptor ligands is required for keratinocyte migration in cutaneous wound healing. J. Cell Biol. 151:209–220. http://dx.doi.org/10.1083/jcb.151.2.209.
  • Pruessmeyer J, Martin C, Hess FM, Schwarz N, Schmidt S, Kogel T, Hoettecke N, Schmidt B, Sechi A, Uhlig S, Ludwig A. 2010. A disintegrin and metalloproteinase 17 (ADAM17) mediates inflammation-induced shedding of syndecan-1 and -4 by lung epithelial cells. J. Biol. Chem. 285:555–564. http://dx.doi.org/10.1074/jbc.M109.059394.
  • van Tetering G, Bovenschen N, Meeldijk J, van Diest PJ, Vooijs M. 2011. Cleavage of Notch1 by granzyme B disables its transcriptional activity. Biochem. J. 437:313–322. http://dx.doi.org/10.1042/BJ20110226.
  • Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP. 1997. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385:729–733. http://dx.doi.org/10.1038/385729a0.
  • Herreman A, Hartmann D, Annaert W, Saftig P, Craessaerts K, Serneels L, Umans L, Schrijvers V, Checler F, Vanderstichele H, Baekelandt V, Dressel R, Cupers P, Huylebroeck D, Zwijsen A, Van Leuven F, De Strooper B. 1999. Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc. Natl. Acad. Sci. U. S. A. 96:11872–11877. http://dx.doi.org/10.1073/pnas.96.21.11872.
  • Mumm JS, Schroeter EH, Saxena MT, Griesemer A, Tian X, Pan DJ, Ray WJ, Kopan R. 2000. A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol. Cell 5:197–206. http://dx.doi.org/10.1016/S1097-2765(00)80416-5.
  • Le Gall SM, Maretzky T, Issuree PD, Niu XD, Reiss K, Saftig P, Khokha R, Lundell D, Blobel CP. 2010. ADAM17 is regulated by a rapid and reversible mechanism that controls access to its catalytic site. J. Cell Sci. 123:3913–3922. http://dx.doi.org/10.1242/jcs.069997.
  • Meek B, Cloosen S, Borsotti C, Van Elssen CH, Vanderlocht J, Schnijderberg MC, van der Poel MW, Leewis B, Hesselink R, Manz MG, Katsura Y, Kawamoto H, Germeraad WT, Bos GM. 2010. In vitro-differentiated T/natural killer-cell progenitors derived from human CD34+ cells mature in the thymus. Blood 115:261–264. http://dx.doi.org/10.1182/blood-2009-05-223990.
  • Theys J, Jutten B, Habets R, Paesmans K, Groot AJ, Lambin P, Wouters BG, Lammering G, Vooijs M. 2011. E-Cadherin loss associated with EMT promotes radioresistance in human tumor cells. Radiother. Oncol. 99:392–397. http://dx.doi.org/10.1016/j.radonc.2011.05.044.
  • Hodin CM, Verdam FJ, Grootjans J, Rensen SS, Verheyen FK, Dejong CH, Buurman WA, Greve JW, Lenaerts K. 2011. Reduced Paneth cell antimicrobial protein levels correlate with activation of the unfolded protein response in the gut of obese individuals. J. Pathol. 225:276–284. http://dx.doi.org/10.1002/path.2917.
  • Watanabe K, Nagaoka T, Lee JM, Bianco C, Gonzales M, Castro NP, Rangel MC, Sakamoto K, Sun Y, Callahan R, Salomon DS. 2009. Enhancement of Notch receptor maturation and signaling sensitivity by Cripto-1. J. Cell Biol. 187:343–353. http://dx.doi.org/10.1083/jcb.200905105.
  • Sahin U, Weskamp G, Zheng Y, Chesneau V, Horiuchi K, Blobel CP. 2006. A sensitive method to monitor ectodomain shedding of ligands of the epidermal growth factor receptor. Methods Mol. Biol. 327:99–113. http://dx.doi.org/10.1385/1-59745-012-X:99.
  • Oberg C, Li J, Pauley A, Wolf E, Gurney M, Lendahl U. 2001. The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. J. Biol. Chem. 276:35847–35853. http://dx.doi.org/10.1074/jbc.M103992200.
  • Rechsteiner M, Rogers SW. 1996. PEST sequences and regulation by proteolysis. Trends Biochem. Sci. 21:267–271. http://dx.doi.org/10.1016/S0968-0004(96)10031-1.
  • Le Gall SM, Bobe P, Reiss K, Horiuchi K, Niu XD, Lundell D, Gibb DR, Conrad D, Saftig P, Blobel CP. 2009. ADAMs 10 and 17 represent differentially regulated components of a general shedding machinery for membrane proteins such as transforming growth factor alpha, L-selectin, and tumor necrosis factor alpha. Mol. Biol. Cell 20:1785–1794. http://dx.doi.org/10.1091/mbc.E08-11-1135.
  • Weber S, Niessen MT, Prox J, Lullmann-Rauch R, Schmitz A, Schwanbeck R, Blobel CP, Jorissen E, de Strooper B, Niessen CM, Saftig P. 2011. The disintegrin/metalloproteinase Adam10 is essential for epidermal integrity and Notch-mediated signaling. Development 138:495–505. http://dx.doi.org/10.1242/dev.055210.
  • Groot AJ, Cobzaru C, Weber S, Saftig P, Blobel CP, Kopan R, Vooijs M, Franzke CW. 2013. Epidermal ADAM17 is dispensable for notch activation. J. Invest. Dermatol. 133:2286–2288. http://dx.doi.org/10.1038/jid.2013.162.
  • Wu Y, Cain-Hom C, Choy L, Hagenbeek TJ, de Leon GP, Chen Y, Finkle D, Venook R, Wu X, Ridgway J, Schahin-Reed D, Dow GJ, Shelton A, Stawicki S, Watts RJ, Zhang J, Choy R, Howard P, Kadyk L, Yan M, Zha J, Callahan CA, Hymowitz SG, Siebel CW. 2010. Therapeutic antibody targeting of individual Notch receptors. Nature 464:1052–1057. http://dx.doi.org/10.1038/nature08878.
  • Shimizu K, Chiba S, Hosoya N, Kumano K, Saito T, Kurokawa M, Kanda Y, Hamada Y, Hirai H. 2000. Binding of Delta1, Jagged1, and Jagged2 to Notch2 rapidly induces cleavage, nuclear translocation, and hyperphosphorylation of Notch2. Mol. Cell. Biol. 20:6913–6922. http://dx.doi.org/10.1128/MCB.20.18.6913-6922.2000.
  • Shimizu K, Chiba S, Saito T, Kumano K, Hirai H. 2000. Physical interaction of Delta1, Jagged1, and Jagged2 with Notch1 and Notch3 receptors. Biochem. Biophys. Res. Commun. 276:385–389. http://dx.doi.org/10.1006/bbrc.2000.3469.
  • Ong CT, Cheng HT, Chang LW, Ohtsuka T, Kageyama R, Stormo GD, Kopan R. 2006. Target selectivity of vertebrate notch proteins. Collaboration between discrete domains and CSL-binding site architecture determines activation probability. J. Biol. Chem. 281:5106–5119. http://dx.doi.org/10.1074/jbc.M506108200.
  • Haapasalo A, Kovacs DM. 2011. The many substrates of presenilin/gamma-secretase. J. Alzheimers Dis. 25:3–28. http://dx.doi.org/10.3233/JAD-2011-101065.
  • Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S. 1997. Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89:629–639. http://dx.doi.org/10.1016/S0092-8674(00)80244-5.
  • Kostyszyn B, Cowburn RF, Seiger A, Kjaeldgaard A, Sundstrom E. 2004. Distribution of presenilin 1 and 2 and their relation to Notch receptors and ligands in human embryonic/foetal central nervous system. Brain Res. Dev. Brain Res. 151:75–86. http://dx.doi.org/10.1016/j.devbrainres.2004.04.005.
  • Ma J, Tang X, Wong P, Jacobs B, Borden EC, Bedogni B. 2014. Noncanonical activation of notch1 protein by membrane type I matrix metalloproteinase (MT1-MMP) controls melanoma cell proliferation. J. Biol. Chem. 289:8442–8449. http://dx.doi.org/10.1074/jbc.M113.516039.
  • Stephenson NL, Avis JM. 2012. Direct observation of proteolytic cleavage at the S2 site upon forced unfolding of the Notch negative regulatory region. Proc. Natl. Acad. Sci. U. S. A. 109:E2757–E2765. http://dx.doi.org/10.1073/pnas.1205788109.
  • Sulis ML, Saftig P, Ferrando AA. 2011. Redundancy and specificity of the metalloprotease system mediating oncogenic NOTCH1 activation in T-ALL. Leukemia 25:1564–1569. http://dx.doi.org/10.1038/leu.2011.130.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.