119
Views
178
CrossRef citations to date
0
Altmetric
Article

Glucose Phosphorylation and Mitochondrial Binding Are Required for the Protective Effects of Hexokinases I and II

, , , &
Pages 1007-1017 | Received 06 Feb 2007, Accepted 05 Nov 2007, Published online: 27 Mar 2023

REFERENCES

  • Aflalo, C., and H. Azoulay. 1998. Binding of rat brain hexokinase to recombinant yeast mitochondria: effect of environmental factors and the source of porin. J. Bioenerg. Biomembr. 30:245–255.
  • Ahmad, A., S. Ahmad, B. K. Schneider, C. B. Allen, L. Y. Chang, and C. W. White. 2002. Elevated expression of hexokinase II protects human lung epithelial-like A549 cells against oxidative injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 283:L573–L584.
  • Ardehali, H., B. O'Rourke, and E. Marban. 2005. Cardioprotective role of the mitochondrial ATP-binding cassette protein 1. Circ. Res. 97:740–742.
  • Ardehali, H., R. L. Printz, R. R. Whitesell, J. M. May, and D. K. Granner. 1999. Functional interaction between the N- and C-terminal halves of human hexokinase II. J. Biol. Chem. 274:15986–15989.
  • Ardehali, H., Y. Yano, R. L. Printz, S. Koch, R. R. Whitesell, J. M. May, and D. K. Granner. 1996. Functional organization of mammalian hexokinase II. Retention of catalytic and regulatory functions in both the NH2- and COOH-terminal halves. J. Biol. Chem. 271:1849–1852.
  • Arora, K. K., C. R. Filburn, and P. L. Pedersen. 1991. Glucose phosphorylation. Site-directed mutations which impair the catalytic function of hexokinase. J. Biol. Chem. 266:5359–5362.
  • Arora, K. K., C. R. Filburn, and P. L. Pedersen. 1993. Structure/function relationships in hexokinase. Site-directed mutational analyses and characterization of overexpressed fragments implicate different functions for the N- and C-terminal halves of the enzyme. J. Biol. Chem. 268:18259–18266.
  • Arora, K. K., and P. L. Pedersen. 1988. Functional significance of mitochondrial bound hexokinase in tumor cell metabolism. Evidence for preferential phosphorylation of glucose by intramitochondrially generated ATP. J. Biol. Chem. 263:17422–17428.
  • Azoulay-Zohar, H., A. Israelson, S. Abu-Hamad, and V. Shoshan-Barmatz. 2004. In self-defence: hexokinase promotes voltage-dependent anion channel closure and prevents mitochondria-mediated apoptotic cell death. Biochem. J. 377:347–355.
  • Baijal, M., and J. E. Wilson. 1992. Functional consequences of mutation of highly conserved serine residues, found at equivalent positions in the N- and C-terminal domains of mammalian hexokinases. Arch. Biochem. Biophys. 298:271–278.
  • Baines, C. P., R. A. Kaiser, N. H. Purcell, N. S. Blair, H. Osinska, M. A. Hambleton, E. W. Brunskill, M. R. Sayen, R. A. Gottlieb, G. W. Dorn, J. Robbins, and J. D. Molkentin. 2005. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 4:658–662.
  • Baines, C. P., C. X. Song, Y. T. Zheng, G. W. Wang, J. Zhang, O. L. Wang, Y. Guo, R. Bolli, E. M. Cardwell, and P. Ping. 2003. Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ. Res. 92:873–880.
  • Bell, G. I., C. F. Burant, J. Takeda, and G. W. Gould. 1993. Structure and function of mammalian facilitative sugar transporters. J. Biol. Chem. 268:19161–19164.
  • BeltrandelRio, H., and J. E. Wilson. 1992. Coordinated regulation of cerebral glycolytic and oxidative metabolism, mediated by mitochondrially bound hexokinase dependent on intramitochondrially generated ATP. Arch. Biochem. Biophys. 296:667–677.
  • BeltrandelRio, H., and J. E. Wilson. 1991. Hexokinase of rat brain mitochondria: relative importance of adenylate kinase and oxidative phosphorylation as sources of substrate ATP, and interaction with intramitochondrial compartments of ATP and ADP. Arch. Biochem. Biophys. 286:183–194.
  • BeltrandelRio, H., and J. E. Wilson. 1992. Interaction of mitochondrially bound rat brain hexokinase with intramitochondrial compartments of ATP generated by oxidative phosphorylation and creatine kinase. Arch. Biochem. Biophys. 299:116–124.
  • Bryson, J. M., P. E. Coy, K. Gottlob, N. Hay, and R. B. Robey. 2002. Increased hexokinase activity, of either ectopic or endogenous origin, protects renal epithelial cells against acute oxidant-induced cell death. J. Biol. Chem. 277:11392–11400.
  • Bustamante, E., H. P. Morris, and P. L. Pedersen. 1981. Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding. J. Biol. Chem. 256:8699–8704.
  • Casadio, R., I. Jacoboni, A. Messina, and V. De Pinto. 2002. A 3D model of the voltage-dependent anion channel (VDAC). FEBS Lett. 520:1–7.
  • Colombini, M., E. Blachly-Dyson, and M. Forte. 1996. VDAC, a channel in the outer mitochondrial membrane. Ion Channels 4:169–202.
  • da-Silva, W. S., A. Gomez-Puyou, M. T. de Gomez-Puyou, R. Moreno-Sanchez, F. G. De Felice, L. de Meis, M. F. Oliveira, and A. Galina. 2004. Mitochondrial bound hexokinase activity as a preventive antioxidant defense: steady-state ADP formation as a regulatory mechanism of membrane potential and reactive oxygen species generation in mitochondria. J. Biol. Chem. 279:39846–39855.
  • Fiek, C., R. Benz, N. Roos, and D. Brdiczka. 1982. Evidence for identity between the hexokinase-binding protein and the mitochondrial porin in the outer membrane of rat liver mitochondria. Biochim. Biophys. Acta 688:429–440.
  • Golestani, A., and M. Nemat-Gorgani. 2000. Hexokinase ‘binding sites’ of normal and tumoral human brain mitochondria. Mol. Cell. Biochem. 215:115–121.
  • Gould, G. W., and G. D. Holman. 1993. The glucose transporter family: structure, function and tissue-specific expression. Biochem. J. 295:329–341.
  • Halestrap, A. P., G. P. McStay, and S. J. Clarke. 2002. The permeability transition pore complex: another view. Biochimie 84:153–166.
  • Linden, M., P. Gellerfors, and B. D. Nelson. 1982. Pore protein and the hexokinase-binding protein from the outer membrane of rat liver mitochondria are identical. FEBS Lett. 141:189–192.
  • Magnani, M., M. Bianchi, A. Casabianca, V. Stocchi, A. Daniele, F. Altruda, M. Ferrone, and L. Silengo. 1992. A recombinant human ‘mini’-hexokinase is catalytically active and regulated by hexose 6-phosphates. Biochem. J. 285:193–199.
  • Majewski, N., V. Nogueira, P. Bhaskar, P. E. Coy, J. E. Skeen, K. Gottlob, N. S. Chandel, C. B. Thompson, R. B. Robey, and N. Hay. 2004. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol. Cell 16:819–830.
  • Mannella, C. A. 1998. Conformational changes in the mitochondrial channel protein, VDAC, and their functional implications. J. Struct. Biol. 121:207–218.
  • Mannella, C. A., M. Forte, and M. Colombini. 1992. Toward the molecular structure of the mitochondrial channel, VDAC. J. Bioenerg. Biomembr. 24:7–19.
  • Mathupala, S. P., A. Rempel, and P. L. Pedersen. 1997. Aberrant glycolytic metabolism of cancer cells: a remarkable coordination of genetic, transcriptional, post-translational, and mutational events that lead to a critical role for type II hexokinase. J. Bioenerg. Biomembr. 29:339–343.
  • Middleton, R. J. 1990. Hexokinases and glucokinases. Biochem. Soc. Trans. 18:180–183.
  • Mueckler, M. 1994. Facilitative glucose transporters. Eur. J. Biochem. 219:713–725.
  • Nakagawa, T., S. Shimizu, T. Watanabe, O. Yamaguchi, K. Otsu, H. Yamagata, H. Inohara, T. Kubo, and Y. Tsujimoto. 2005. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652–658.
  • Nemat-Gorgani, M., and J. E. Wilson. 1986. Rat brain hexokinase: location of the substrate nucleotide binding site in a structural domain at the C-terminus of the enzyme. Arch. Biochem. Biophys. 251:97–103.
  • Nutt, L. K., S. S. Margolis, M. Jensen, C. E. Herman, W. G. Dunphy, J. C. Rathmell, and S. Kornbluth. 2005. Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Cell 123:89–103.
  • Pastorino, J. G., and J. B. Hoek. 2003. Hexokinase II: the integration of energy metabolism and control of apoptosis. Curr. Med. Chem. 10:1535–1551.
  • Pastorino, J. G., J. B. Hoek, and N. Shulga. 2005. Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res. 65:10545–10554.
  • Pastorino, J. G., N. Shulga, and J. B. Hoek. 2002. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J. Biol. Chem. 277:7610–7618.
  • Patronas, N. J., G. Di Chiro, C. Kufta, D. Bairamian, P. L. Kornblith, R. Simon, and S. M. Larson. 1985. Prediction of survival in glioma patients by means of positron emission tomography. J. Neurosurg. 62:816–822.
  • Pedersen, P. L., S. Mathupala, A. Rempel, J. F. Geschwind, and Y. H. Ko. 2002. Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim. Biophys. Acta 1555:14–20.
  • Printz, R. L., H. Osawa, H. Ardehali, S. Koch, and D. K. Granner. 1997. Hexokinase II gene: structure, regulation and promoter organization. Biochem. Soc. Trans. 25:107–112.
  • Rostovtseva, T. K., W. Tan, and M. Colombini. 2005. On the role of VDAC in apoptosis: fact and fiction. J. Bioenerg. Biomembr. 37:129–142.
  • Schinzel, A. C., O. Takeuchi, Z. Huang, J. K. Fisher, Z. Zhou, J. Rubens, C. Hetz, N. N. Danial, M. A. Moskowitz, and S. J. Korsmeyer. 2005. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc. Natl. Acad. Sci. USA 102:12005–12010.
  • Schirch, D. M., and J. E. Wilson. 1987. Rat brain hexokinase: location of the substrate hexose binding site in a structural domain at the C-terminus of the enzyme. Arch. Biochem. Biophys. 254:385–396.
  • Shizukuda, Y., and P. M. Buttrick. 2001. Protein kinase C(epsilon) modulates apoptosis induced by beta-adrenergic stimulation in adult rat ventricular myocytes via extracellular signal-regulated kinase (ERK) activity. J. Mol. Cell. Cardiol. 33:1791–1803.
  • Smith, T. A. 2000. Mammalian hexokinases and their abnormal expression in cancer. Br. J. Biomed. Sci. 57:170–178.
  • Southworth, R., K. A. Davey, A. Warley, and P. B. Garlick. 2006. A re-evaluation of the roles of hexokinase I and II in the heart. Am. J. Physiol. Heart Circ. Physiol. 292:H378–H386.
  • Sui, D., and J. E. Wilson. 1997. Structural determinants for the intracellular localization of the isozymes of mammalian hexokinase: intracellular localization of fusion constructs incorporating structural elements from the hexokinase isozymes and the green fluorescent protein. Arch. Biochem. Biophys. 345:111–125.
  • Ureta, T. 1982. The comparative isozymology of vertebrate hexokinases. Comp. Biochem. Physiol. B 71:549–555.
  • Wagner, H. N., Jr. 1993. Oncology: a new engine for PET/SPECT. Highlights of the Society of Nuclear Medicine annual meeting. J. Nucl. Med. 34:13N-16N, 19N, 22N-29N.
  • Weiss, J. N., P. Korge, H. M. Honda, and P. Ping. 2003. Role of the mitochondrial permeability transition in myocardial disease. Circ. Res. 93:292–301.
  • White, T. K., and J. E. Wilson. 1990. Binding of nucleoside triphosphates, inorganic phosphate, and other polyanionic ligands to the N-terminal region of rat brain hexokinase: relationship to regulation of hexokinase activity by antagonistic interactions between glucose 6-phosphate and inorganic phosphate. Arch. Biochem. Biophys. 277:26–34.
  • White, T. K., and J. E. Wilson. 1989. Isolation and characterization of the discrete N- and C-terminal halves of rat brain hexokinase: retention of full catalytic activity in the isolated C-terminal half. Arch. Biochem. Biophys. 274:375–393.
  • White, T. K., and J. E. Wilson. 1987. Rat brain hexokinase: location of the allosteric regulatory site in a structural domain at the N-terminus of the enzyme. Arch. Biochem. Biophys. 259:402–411.
  • Wilson, J. E. 1995. Hexokinases. Rev. Physiol. Biochem. Pharmacol. 126:65–198.
  • Xie, G., and J. E. Wilson. 1990. Tetrameric structure of mitochondrially bound rat brain hexokinase: a crosslinking study. Arch. Biochem. Biophys. 276:285–293.
  • Xie, G. C., and J. E. Wilson. 1988. Rat brain hexokinase: the hydrophobic N-terminus of the mitochondrially bound enzyme is inserted in the lipid bilayer. Arch. Biochem. Biophys. 267:803–810.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.