270
Views
12
CrossRef citations to date
0
Altmetric
Article

Functional Differences of Very-Low-Density Lipoprotein Receptor Splice Variants in Regulating Wnt Signaling

, , &
Pages 2645-2654 | Received 15 Apr 2016, Accepted 22 Jul 2016, Published online: 17 Mar 2023

REFERENCES

  • MacDonald BT, Tamai K, He X. 2009. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26. http://dx.doi.org/10.1016/j.devcel.2009.06.016.
  • Clevers H, Nusse R. 2012. Wnt/beta-catenin signaling and disease. Cell 149:1192–1205. http://dx.doi.org/10.1016/j.cell.2012.05.012.
  • Bergmann MW. 2010. WNT signaling in adult cardiac hypertrophy and remodeling: lessons learned from cardiac development. Circ Res 107:1198–1208. http://dx.doi.org/10.1161/CIRCRESAHA.110.223768.
  • Malekar P, Hagenmueller M, Anyanwu A, Buss S, Streit MR, Weiss CS, Wolf D, Riffel J, Bauer A, Katus HA, Hardt SE. 2010. Wnt signaling is critical for maladaptive cardiac hypertrophy and accelerates myocardial remodeling. Hypertension 55:939–945. http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.141127.
  • Chen Y, Hu Y, Zhou T, Zhou KK, Mott R, Wu M, Boulton M, Lyons TJ, Gao G, Ma JX. 2009. Activation of the Wnt pathway plays a pathogenic role in diabetic retinopathy in humans and animal models. Am J Pathol 175:2676–2685. http://dx.doi.org/10.2353/ajpath.2009.080945.
  • Zhou T, He X, Cheng R, Zhang B, Zhang RR, Chen Y, Takahashi Y, Murray AR, Lee K, Gao G, Ma JX. 2012. Implication of dysregulation of the canonical wingless-type MMTV integration site (WNT) pathway in diabetic nephropathy. Diabetologia 55:255–266. http://dx.doi.org/10.1007/s00125-011-2314-2.
  • Dieckmann M, Dietrich MF, Herz J. 2010. Lipoprotein receptors—an evolutionarily ancient multifunctional receptor family. Biol Chem 391:1341–1363. http://dx.doi.org/10.1515/BC.2010.129.
  • Hussain MM, Strickland DK, Bakillah A. 1999. The mammalian low-density lipoprotein receptor family. Annu Rev Nutr 19:141–172. http://dx.doi.org/10.1146/annurev.nutr.19.1.141.
  • Argraves WS. 2001. Members of the low density lipoprotein receptor family control diverse physiological processes. Front Biosci 6:D406–D416.
  • Tissir F, Goffinet AM. 2003. Reelin and brain development. Nat Rev Neurosci 4:496–505. http://dx.doi.org/10.1038/nrn1113.
  • Chen Y, Hu Y, Lu K, Flannery JG, Ma J-X. 2007. Very low density lipoprotein receptor, a negative regulator of the Wnt signaling pathway and choroidal neovascularization. J Biol Chem 282:34420–34428. http://dx.doi.org/10.1074/jbc.M611289200.
  • Frykman PK, Brown MS, Yamamoto T, Goldstein JL, Herz J. 1995. Normal plasma lipoproteins and fertility in gene-targeted mice homozygous for a disruption in the gene encoding very low density lipoprotein receptor. Proc Natl Acad Sci U S A 92:8453–8457. http://dx.doi.org/10.1073/pnas.92.18.8453.
  • Hu W, Jiang A, Liang J, Meng H, Chang B, Gao H, Qiao X. 2008. Expression of VLDLR in the retina and evolution of subretinal neovascularization in the knockout mouse model's retinal angiomatous proliferation. Invest Ophthalmol Vis Sci 49:407–415. http://dx.doi.org/10.1167/iovs.07-0870.
  • Li C, Huang Z, Kingsley R, Zhou X, Li F, Parke DW, II, Cao W. 2007. Biochemical alterations in the retinas of very low-density lipoprotein receptor knockout mice: an animal model of retinal angiomatous proliferation. Arch Ophthalmol 125:795–803. http://dx.doi.org/10.1001/archopht.125.6.795.
  • Jiang A, Hu W, Meng H, Gao H, Qiao X. 2009. Loss of VLDL receptor activates retinal vascular endothelial cells and promotes angiogenesis. Invest Ophthalmol Vis Sci 50:844–850. http://dx.doi.org/10.1167/iovs.08-2447.
  • Lee K, Shin Y, Cheng R, Park K, Hu Y, McBride J, He X, Takahashi Y, Ma JX. 2014. Receptor heterodimerization as a novel mechanism for the regulation of Wnt/beta-catenin signaling. J Cell Sci 127:4857–4869. http://dx.doi.org/10.1242/jcs.149302.
  • Iijima H, Miyazawa M, Sakai J, Magoori K, Ito MR, Suzuki H, Nose M, Kawarabayasi Y, Yamamoto TT. 1998. Expression and characterization of a very low density lipoprotein receptor variant lacking the O-linked sugar region generated by alternative splicing. J Biochem 124:747–755. http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022175.
  • Sakai K, Tiebel O, Ljungberg MC, Sullivan M, Lee HJ, Terashima T, Li R, Kobayashi K, Lu HC, Chan L, Oka K. 2009. A neuronal VLDLR variant lacking the third complement-type repeat exhibits high capacity binding of ApoE containing lipoproteins. Brain Res 1276:11–21. http://dx.doi.org/10.1016/j.brainres.2009.04.030.
  • Chen T, Wu F, Chen FM, Tian J, Qu S. 2005. Variations of very low-density lipoprotein receptor subtype expression in gastrointestinal adenocarcinoma cells with various differentiations. World J Gastroenterol 11:2817–2821. http://dx.doi.org/10.3748/wjg.v11.i18.2817.
  • Yang P, Liu Z, Wang H, Tian J, Li Y, Zong Y, Qu S. 2009. Enhanced activity of very low density lipoprotein receptor II promotes SGC7901 cell proliferation and migration. Life Sci 84:402–408. http://dx.doi.org/10.1016/j.lfs.2008.12.020.
  • Marlin SD, Staunton DE, Springer TA, Stratowa C, Sommergruber W, Merluzzi VJ. 1990. A soluble form of intercellular adhesion molecule-1 inhibits rhinovirus infection. Nature 344:70–72. http://dx.doi.org/10.1038/344070a0.
  • Becker JC, Dummer R, Hartmann AA, Burg G, Schmidt RE. 1991. Shedding of ICAM-1 from human melanoma cell lines induced by IFN-gamma and tumor necrosis factor-alpha. Functional consequences on cell-mediated cytotoxicity. J Immunol 147:4398–4401.
  • Masood R, Cai J, Zheng T, Smith DL, Hinton DR, Gill PS. 2001. Vascular endothelial growth factor (VEGF) is an autocrine growth factor for VEGF receptor-positive human tumors. Blood 98:1904–1913. http://dx.doi.org/10.1182/blood.V98.6.1904.
  • Magrane J, Casaroli-Marano RP, Reina M, Gafvels M, Vilaro S. 1999. The role of O-linked sugars in determining the very low density lipoprotein receptor stability or release from the cell. FEBS Lett 451:56–62. http://dx.doi.org/10.1016/S0014-5793(99)00494-9.
  • Bollin F, Dechavanne V, Chevalet L. 2011. Design of experiment in CHO and HEK transient transfection condition optimization. Protein Expr Purif 78:61–68. http://dx.doi.org/10.1016/j.pep.2011.02.008.
  • Wu YQ, Notario V, Chader GJ, Becerra SP. 1995. Identification of pigment epithelium-derived factor in the interphotoreceptor matrix of bovine eyes. Protein Expr Purif 6:447–456. http://dx.doi.org/10.1006/prep.1995.1060.
  • McBride JD, Jenkins AJ, Liu X, Zhang B, Lee K, Berry WL, Janknecht R, Griffin CT, Aston CE, Lyons TJ, Tomasek JJ, Ma JX. 2014. Elevated circulation levels of an antiangiogenic SERPIN in patients with diabetic microvascular complications impair wound healing through suppression of Wnt signaling. J Invest Dermatol 134:1725–1734. http://dx.doi.org/10.1038/jid.2014.40.
  • Takahashi Y, Chen Q, Rajala RV, Ma JX. 2015. MicroRNA-184 modulates canonical Wnt signaling through the regulation of frizzled-7 expression in the retina with ischemia-induced neovascularization. FEBS Lett 589:1143–1149. http://dx.doi.org/10.1016/j.febslet.2015.03.010.
  • Murray AR, Chen Q, Takahashi Y, Zhou KK, Park K, Ma JX. 2013. MicroRNA-200b downregulates oxidation resistance 1 (Oxr1) expression in the retina of type 1 diabetes model. Invest Ophthalmol Vis Sci 54:1689–1697. http://dx.doi.org/10.1167/iovs.12-10921.
  • Wang Z, Cheng R, Lee K, Tyagi P, Ding L, Kompella UB, Chen J, Xu X, Ma J-X. 2015. Nanoparticle-mediated expression of a Wnt pathway inhibitor ameliorates ocular neovascularization. Arterioscler Thromb Vasc Biol 35:855–864. http://dx.doi.org/10.1161/ATVBAHA.114.304627.
  • Marlovits TC, Abrahamsberg C, Blaas D. 1998. Very-low-density lipoprotein receptor fragment shed from HeLa cells inhibits human rhinovirus infection. J Virol 72:10246–10250.
  • Lustig B, Jerchow B, Sachs M, Weiler S, Pietsch T, Karsten U, van de Wetering M, Clevers H, Schlag PM, Birchmeier W, Behrens J. 2002. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 22:1184–1193. http://dx.doi.org/10.1128/MCB.22.4.1184-1193.2002.
  • Kingsley DM, Kozarsky KF, Hobbie L, Krieger M. 1986. Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-Gal/UDP-GalNAc 4-epimerase deficient mutant. Cell 44:749–759. http://dx.doi.org/10.1016/0092-8674(86)90841-X.
  • Shen GM, Zhao YZ, Chen MT, Zhang FL, Liu XL, Wang Y, Liu CZ, Yu J, Zhang JW. 2012. Hypoxia-inducible factor-1 (HIF-1) promotes LDL and VLDL uptake through inducing VLDLR under hypoxia. Biochem J 441:675–683. http://dx.doi.org/10.1042/BJ20111377.
  • Arden GB, Sivaprasad S. 2011. Hypoxia and oxidative stress in the causation of diabetic retinopathy. Curr Diabetes Rev 7:291–304. http://dx.doi.org/10.2174/157339911797415620.
  • Nyengaard JR, Ido Y, Kilo C, Williamson JR. 2004. Interactions between hyperglycemia and hypoxia: implications for diabetic retinopathy. Diabetes 53:2931–2938. http://dx.doi.org/10.2337/diabetes.53.11.2931.
  • Wang J, Takeuchi T, Tanaka S, Kubo SK, Kayo T, Lu D, Takata K, Koizumi A, Izumi T. 1999. A mutation in the insulin 2 gene induces diabetes with severe pancreatic beta-cell dysfunction in the Mody mouse. J Clin Invest 103:27–37. http://dx.doi.org/10.1172/JCI4431.
  • Yoshioka M, Kayo T, Ikeda T, Koizumi A. 1997. A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 46:887–894.
  • Chua SC, Jr, Chung WK, Wu-Peng XS, Zhang Y, Liu SM, Tartaglia L, Leibel RL. 1996. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271:994–996. http://dx.doi.org/10.1126/science.271.5251.994.
  • Chen J, Stahl A, Krah NM, Seaward MR, Dennison RJ, Sapieha P, Hua J, Hatton CJ, Juan AM, Aderman CM, Willett KL, Guerin KI, Mammoto A, Campbell M, Smith LE. 2011. Wnt signaling mediates pathological vascular growth in proliferative retinopathy. Circulation 124:1871–1881. http://dx.doi.org/10.1161/CIRCULATIONAHA.111.040337.
  • Dorrell MI, Aguilar E, Jacobson R, Yanes O, Gariano R, Heckenlively J, Banin E, Ramirez GA, Gasmi M, Bird A, Siuzdak G, Friedlander M. 2009. Antioxidant or neurotrophic factor treatment preserves function in a mouse model of neovascularization-associated oxidative stress. J Clin Invest 119:611–623. http://dx.doi.org/10.1172/JCI35977.
  • Liu Q, Zhang J, Tran H, Verbeek MM, Reiss K, Estus S, Bu G. 2009. LRP1 shedding in human brain: roles of ADAM10 and ADAM17. Mol Neurodegener 4:17. http://dx.doi.org/10.1186/1750-1326-4-17.
  • Arribas J, Massague J. 1995. Transforming growth factor-alpha and beta-amyloid precursor protein share a secretory mechanism. J Cell Biol 128:433–441. http://dx.doi.org/10.1083/jcb.128.3.433.
  • Arribas J, Lopez-Casillas F, Massague J. 1997. Role of the juxtamembrane domains of the transforming growth factor-alpha precursor and the beta-amyloid precursor protein in regulated ectodomain shedding. J Biol Chem 272:17160–17165. http://dx.doi.org/10.1074/jbc.272.27.17160.
  • Garton KJ, Gough PJ, Philalay J, Wille PT, Blobel CP, Whitehead RH, Dempsey PJ, Raines EW. 2003. Stimulated shedding of vascular cell adhesion molecule 1 (VCAM-1) is mediated by tumor necrosis factor-alpha-converting enzyme (ADAM 17). J Biol Chem 278:37459–37464. http://dx.doi.org/10.1074/jbc.M305877200.
  • Varela-Nallar L, Rojas-Abalos M, Abbott AC, Moya EA, Iturriaga R, Inestrosa NC. 2014. Chronic hypoxia induces the activation of the Wnt/beta-catenin signaling pathway and stimulates hippocampal neurogenesis in wild-type and APPswe-PS1DeltaE9 transgenic mice in vivo. Front Cell Neurosci 8:17. http://dx.doi.org/10.3389/fncel.2014.00017.
  • Mazumdar J, O'Brien WT, Johnson RS, LaManna JC, Chavez JC, Klein PS, Simon MC. 2010. O2 regulates stem cells through Wnt/beta-catenin signalling. Nat Cell Biol 12:1007–1013. http://dx.doi.org/10.1038/ncb2102.
  • Barber AJ, Antonetti DA, Kern TS, Reiter CE, Soans RS, Krady JK, Levison SW, Gardner TW, Bronson SK. 2005. The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest Ophthalmol Vis Sci 46:2210–2218. http://dx.doi.org/10.1167/iovs.04-1340.
  • Midena E, Segato T, Radin S, di Giorgio G, Meneghini F, Piermarocchi S, Belloni AS. 1989. Studies on the retina of the diabetic db/db mouse. I. Endothelial cell-pericyte ratio. Ophthalmic Res 21:106–111.
  • Tadayoni R, Paques M, Gaudric A, Vicaut E. 2003. Erythrocyte and leukocyte dynamics in the retinal capillaries of diabetic mice. Exp Eye Res 77:497–504. http://dx.doi.org/10.1016/S0014-4835(03)00155-6.
  • Wyne KL, Pathak K, Seabra MC, Hobbs HH. 1996. Expression of the VLDL receptor in endothelial cells. Arterioscler Thromb Vasc Biol 16:407–415. http://dx.doi.org/10.1161/01.ATV.16.3.407.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.