43
Views
17
CrossRef citations to date
0
Altmetric
Research Article

A Tumor-Promoting Phorbol Ester Causes a Large Increase in APOBEC3A Expression and a Moderate Increase in APOBEC3B Expression in a Normal Human Keratinocyte Cell Line without Increasing Genomic Uracils

, , , & ORCID Icon
Article: e00238-18 | Received 15 May 2018, Accepted 07 Oct 2018, Published online: 03 Mar 2023

REFERENCES

  • Furstenberger G, Berry DL, Sorg B, Marks F. 1981. Skin tumor promotion by phorbol esters is a two-stage process. Proc Natl Acad Sci U S A 78:7722–7726. https://doi.org/10.1073/pnas.78.12.7722.
  • Griner EM, Kazanietz MG. 2007. Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer 7:281–294. https://doi.org/10.1038/nrc2110.
  • Spitaler M, Cantrell DA. 2004. Protein kinase C and beyond. Nat Immunol 5:785–790. https://doi.org/10.1038/ni1097.
  • Rundhaug JE, Fischer SM. 2010. Molecular mechanisms of mouse skin tumor promotion. Cancers (Basel) 2:436–482. https://doi.org/10.3390/cancers2020436.
  • Schwarz M, Munzel PA, Braeuning A. 2013. Non-melanoma skin cancer in mouse and man. Arch Toxicol 87:783–798. https://doi.org/10.1007/s00204-012-0998-9.
  • Giorgi C, Agnoletto C, Baldini C, Bononi A, Bonora M, Marchi S, Missiroli S, Patergnani S, Poletti F, Rimessi A, Zavan B, Pinton P. 2010. Redox control of protein kinase C: cell- and disease-specific aspects. Antioxid Redox Signal 13:1051–1085. https://doi.org/10.1089/ars.2009.2825.
  • Peleva E, Exton LS, Kelley K, Kleyn CE, Mason KJ, Smith CH. 2018. Risk of cancer in patients with psoriasis on biological therapies: a systematic review. Br J Dermatol 178:103–113. https://doi.org/10.1111/bjd.15830.
  • Pouplard C, Brenaut E, Horreau C, Barnetche T, Misery L, Richard MA, Aractingi S, Aubin F, Cribier B, Joly P, Jullien D, Le Maitre M, Ortonne JP, Paul C. 2013. Risk of cancer in psoriasis: a systematic review and meta-analysis of epidemiological studies. J Eur Acad Dermatol Venereol 27(Suppl 3):36–46. https://doi.org/10.1111/jdv.12165.
  • Murakawa M, Yamaoka K, Tanaka Y, Fukuda Y. 2006. Involvement of tumor necrosis factor (TNF)-alpha in phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin edema in mice. Biochem Pharmacol 71:1331–1336. https://doi.org/10.1016/j.bcp.2006.01.005.
  • Fischer SM, Baldwin JK, Adams LM. 1986. Effects of anti-promoters and strain of mouse on tumor promoter-induced oxidants in murine epidermal cells. Carcinogenesis 7:915–918. https://doi.org/10.1093/carcin/7.6.915.
  • Perchellet EM, Perchellet JP. 1989. Characterization of the hydroperoxide response observed in mouse skin treated with tumor promoters in vivo. Cancer Res 49:6193–6201.
  • Leonard B, McCann JL, Starrett GJ, Kosyakovsky L, Luengas EM, Molan AM, Burns MB, McDougle RM, Parker PJ, Brown WL, Harris RS. 2015. The PKC/NF-κB signaling pathway induces APOBEC3B expression in multiple human cancers. Cancer Res 75:4538–4547. https://doi.org/10.1158/0008-5472.CAN-15-2171-T.
  • Madsen P, Anant S, Rasmussen HH, Gromov P, Vorum H, Dumanski JP, Tommerup N, Collins JE, Wright CL, Dunham I, MacGinnitie AJ, Davidson NO, Celis JE. 1999. Psoriasis upregulated phorbolin-1 shares structural but not functional similarity to the mRNA-editing protein apobec-1. J Invest Dermatol 113:162–169. https://doi.org/10.1046/j.1523-1747.1999.00682.x.
  • Maruyama W, Shirakawa K, Matsui H, Matsumoto T, Yamazaki H, Sarca AD, Kazuma Y, Kobayashi M, Shindo K, Takaori-Kondo A. 2016. Classical NF-κB pathway is responsible for APOBEC3B expression in cancer cells. Biochem Biophys Res Commun 478:1466–1471. https://doi.org/10.1016/j.bbrc.2016.08.148.
  • Rasmussen HH, Celis JE. 1993. Evidence for an altered protein kinase C (PKC) signaling pathway in psoriasis. J Invest Dermatol 101:560–566. https://doi.org/10.1111/1523-1747.ep12365986.
  • Siriwardena SU, Chen K, Bhagwat AS. 2016. Functions and malfunctions of mammalian DNA-cytosine deaminases. Chem Rev 116:12688–12710. https://doi.org/10.1021/acs.chemrev.6b00296.
  • Krokan HE, Drablos F, Slupphaug G. 2002. Uracil in DNA–occurrence, consequences and repair. Oncogene 21:8935–8948. https://doi.org/10.1038/sj.onc.1205996.
  • Stavrou S, Ross SR. 2015. APOBEC3 proteins in viral immunity. J Immunol 195:4565–4570. https://doi.org/10.4049/jimmunol.1501504.
  • Borzooee F, Asgharpour M, Quinlan E, Grant MD, Larijani M. 2018. Viral subversion of APOBEC3s: lessons for anti-tumor immunity and tumor immunotherapy. Int Rev Immunol 37:151–164. https://doi.org/10.1080/08830185.2017.1403596.
  • Swanton C, McGranahan N, Starrett GJ, Harris RS. 2015. APOBEC enzymes: mutagenic fuel for cancer evolution and heterogeneity. Cancer Discov 5:704–712. https://doi.org/10.1158/2159-8290.CD-15-0344.
  • Venkatesan S, Rosenthal R, Kanu N, McGranahan N, Bartek J, Quezada SA, Hare J, Harris RS, Swanton C. 2018. APOBEC mutagenesis in drug resistance and immune escape in HIV and cancer evolution. Ann Oncol https://doi.org/10.1093/annonc/mdy003.
  • Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K, Jones D, Hinton J, Marshall J, Stebbings LA, Menzies A, Martin S, Leung K, Chen L, Leroy C, Ramakrishna M, Rance R, Lau KW, Mudie LJ, Varela I, McBride DJ, Bignell GR, Cooke SL, Shlien A, Gamble J, Whitmore I, Maddison M, Tarpey PS, Davies HR, Papaemmanuil E, Stephens PJ, McLaren S, Butler AP, Teague JW, Jönsson G, Garber JE, Silver D, Miron P, Fatima A, Boyault S, Langerød A, Tutt A, Martens JWM, Aparicio SAJR, Borg Å, Salomon AV, Thomas G, Børresen-Dale A-L, Richardson AL, Neuberger MS, Futreal PA, Campbell PJ, Stratton MR. 2012. Mutational processes molding the genomes of 21 breast cancers. Cell 149:979–993. https://doi.org/10.1016/j.cell.2012.04.024.
  • Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale A-L, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjörd JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinski M, Imielinsk M, Jäger N, Jones DTW, Jones D, Knappskog S, Kool M, Lakhani SR, López-Otín C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt ANJ, Valdés-Mas R, van Buuren MM, van 't Veer L, Vincent-Salomon A, Waddell N, Yates LR, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, Stratton MR. 2013. Signatures of mutational processes in human cancer. Nature 500:415–421. https://doi.org/10.1038/nature12477.
  • Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P, Kiezun A, Kryukov GV, Carter SL, Saksena G, Harris S, Shah RR, Resnick MA, Getz G, Gordenin DA. 2013. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet 45:970–976. https://doi.org/10.1038/ng.2702.
  • Roberts SA, Sterling J, Thompson C, Harris S, Mav D, Shah R, Klimczak LJ, Kryukov GV, Malc E, Mieczkowski PA, Resnick MA, Gordenin DA. 2012. Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol Cell 46:424–435. https://doi.org/10.1016/j.molcel.2012.03.030.
  • Burns MB, Temiz NA, Harris RS. 2013. Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat Genet 45:977–983. https://doi.org/10.1038/ng.2701.
  • Burns MB, Lackey L, Carpenter MA, Rathore A, Land AM, Leonard B, Refsland EW, Kotandeniya D, Tretyakova N, Nikas JB, Yee D, Temiz NA, Donohue DE, McDougle RM, Brown WL, Law EK, Harris RS. 2013. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494:366–370. https://doi.org/10.1038/nature11881.
  • Burns MB, Leonard B, Harris RS. 2015. APOBEC3B: pathological consequences of an innate immune DNA mutator. Biomed J 38:102–110. https://doi.org/10.4103/2319-4170.148904.
  • Sasaki H, Suzuki A, Tatematsu T, Shitara M, Hikosaka Y, Okuda K, Moriyama S, Yano M, Fujii Y. 2014. APOBEC3B gene overexpression in non-small-cell lung cancer. Biomed Rep 2:392–395. https://doi.org/10.3892/br.2014.256.
  • Leonard B, Hart SN, Burns MB, Carpenter MA, Temiz NA, Rathore A, Vogel RI, Nikas JB, Law EK, Brown WL, Li Y, Zhang Y, Maurer MJ, Oberg AL, Cunningham JM, Shridhar V, Bell DA, April C, Bentley D, Bibikova M, Cheetham RK, Fan JB, Grocock R, Humphray S, Kingsbury Z, Peden J, Chien J, Swisher EM, Hartmann LC, Kalli KR, Goode EL, Sicotte H, Kaufmann SH, Harris RS. 2013. APOBEC3B upregulation and genomic mutation patterns in serous ovarian carcinoma. Cancer Res 73:7222–7231. https://doi.org/10.1158/0008-5472.CAN-13-1753.
  • Taylor BJ, Nik-Zainal S, Wu YL, Stebbings LA, Raine K, Campbell PJ, Rada C, Stratton MR, Neuberger MS. 2013. DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis. Elife 2:e00534. https://doi.org/10.7554/eLife.00534.
  • Bogerd HP, Kornepati AV, Marshall JB, Kennedy EM, Cullen BR. 2015. Specific induction of endogenous viral restriction factors using CRISPR/Cas-derived transcriptional activators. Proc Natl Acad Sci U S A 112:E7249–E7256. https://doi.org/10.1073/pnas.1516305112.
  • Chan K, Roberts SA, Klimczak LJ, Sterling JF, Saini N, Malc EP, Kim J, Kwiatkowski DJ, Fargo DC, Mieczkowski PA, Getz G, Gordenin DA. 2015. An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers. Nat Genet 47:1067–1072. https://doi.org/10.1038/ng.3378.
  • Trivedi NR, Gilliland KL, Zhao W, Liu W, Thiboutot DM. 2006. Gene array expression profiling in acne lesions reveals marked upregulation of genes involved in inflammation and matrix remodeling. J InvestDermatol 126:1071–1079. https://doi.org/10.1038/sj.jid.5700213.
  • Land AM, Law EK, Carpenter MA, Lackey L, Brown WL, Harris RS. 2013. Endogenous APOBEC3A DNA cytosine deaminase is cytoplasmic and nongenotoxic. J Biol Chem 288:17253–17260. https://doi.org/10.1074/jbc.M113.458661.
  • Aynaud MM, Suspene R, Vidalain PO, Mussil B, Guetard D, Tangy F, Wain-Hobson S, Vartanian JP. 2012. Human Tribbles 3 protects nuclear DNA from cytidine deamination by APOBEC3A. J Biol Chem 287:39182–39192. https://doi.org/10.1074/jbc.M112.372722.
  • Green AM, Landry S, Budagyan K, Avgousti DC, Shalhout S, Bhagwat AS, Weitzman MD. 2016. APOBEC3A damages the cellular genome during DNA replication. Cell Cycle 15:998–1008. https://doi.org/10.1080/15384101.2016.1152426.
  • Landry S, Narvaiza I, Linfesty DC, Weitzman MD. 2011. APOBEC3A can activate the DNA damage response and cause cell-cycle arrest. EMBO Rep 12:444–450. https://doi.org/10.1038/embor.2011.46.
  • Mussil B, Suspene R, Aynaud MM, Gauvrit A, Vartanian JP, Wain-Hobson S. 2013. Human APOBEC3A isoforms translocate to the nucleus and induce DNA double strand breaks leading to cell stress and death. PLoS One One 8:e73641. https://doi.org/10.1371/journal.pone.0073641.
  • Suspène R, Mussil B, Laude H, Caval V, Berry N, Bouzidi MS, Thiers V, Wain-Hobson S, Vartanian J-P. 2017. Self-cytoplasmic DNA upregulates the mutator enzyme APOBEC3A leading to chromosomal DNA damage. Nucleic Acids Res 45:3231–3241. https://doi.org/10.1093/nar/gkx001.
  • Wei S, Shalhout S, Ahn YH, Bhagwat AS. 2015. A versatile new tool to quantify abasic sites in DNA and inhibit base excision repair. DNA Repair (Amst) 27:9–18. https://doi.org/10.1016/j.dnarep.2014.12.006.
  • Shalhout S, Haddad D, Sosin A, Holland TC, Al-Katib A, Martin A, Bhagwat AS. 2014. Genomic uracil homeostasis during normal B cell maturation and loss of this balance during B cell cancer development. Mol Cell Biol 34:4019–4032. https://doi.org/10.1128/MCB.00589-14.
  • Wei S, Perera MLW, Sakhtemani R, Bhagwat AS. 2017. A novel class of chemicals that react with abasic sites in DNA and specifically kill B cell cancers. PLoS One One 12:e0185010. https://doi.org/10.1371/journal.pone.0185010.
  • Kavli B, Sundheim O, Akbari M, Otterlei M, Nilsen H, Skorpen F, Aas PA, Hagen L, Krokan HE, Slupphaug G. 2002. hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J Biol Chem 277:39926–39936. https://doi.org/10.1074/jbc.M207107200.
  • Kemmerich K, Dingler FA, Rada C, Neuberger MS. 2012. Germline ablation of SMUG1 DNA glycosylase causes loss of 5-hydroxymethyluracil- and UNG-backup uracil-excision activities and increases cancer predisposition of Ung-/-Msh2-/- mice. Nucleic Acids Res 40:6016–6025. https://doi.org/10.1093/nar/gks259.
  • Nilsen H, Haushalter KA, Robins P, Barnes DE, Verdine GL, Lindahl T. 2001. Excision of deaminated cytosine from the vertebrate genome: role of the SMUG1 uracil-DNA glycosylase. EMBO J 20:4278–4286. https://doi.org/10.1093/emboj/20.15.4278.
  • Alsoe L, Sarno A, Carracedo S, Domanska D, Dingler F, Lirussi L, SenGupta T, Tekin NB, Jobert L, Alexandrov LB, Galashevskaya A, Rada C, Sandve GK, Rognes T, Krokan HE, Nilsen H. 2017. Uracil accumulation and mutagenesis dominated by cytosine deamination in CpG dinucleotides in mice lacking UNG and SMUG1. Sci Rep 7:7199. https://doi.org/10.1038/s41598-017-07314-5.
  • Bhagwat AS, Hao W, Townes JP, Lee H, Tang H, Foster PL. 2016. Strand-biased cytosine deamination at the replication fork causes cytosine to thymine mutations in Escherichia coli. Proc Natl Acad Sci U S A 113:2176–2181. https://doi.org/10.1073/pnas.1522325113.
  • Haradhvala NJ, Polak P, Stojanov P, Covington KR, Shinbrot E, Hess JM, Rheinbay E, Kim J, Maruvka YE, Braunstein LZ, Kamburov A, Hanawalt PC, Wheeler DA, Koren A, Lawrence MS, Getz G. 2016. Mutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repair. Cell 164:538–549. https://doi.org/10.1016/j.cell.2015.12.050.
  • Hoopes JI, Cortez LM, Mertz TM, Malc EP, Mieczkowski PA, Roberts SA. 2016. APOBEC3A and APOBEC3B preferentially deaminate the lagging strand template during DNA replication. Cell Rep 14:1273–1282. https://doi.org/10.1016/j.celrep.2016.01.021.
  • Seplyarskiy VB, Soldatov RA, Popadin KY, Antonarakis SE, Bazykin GA, Nikolaev SI. 2016. APOBEC-induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication. Genome Res 26:174–182. https://doi.org/10.1101/gr.197046.115.
  • Pham P, Bransteitter R, Petruska J, Goodman MF. 2003. Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 424:103–107. https://doi.org/10.1038/nature01760.
  • Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D. 2003. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424:99–103. https://doi.org/10.1038/nature01709.
  • Henderson S, Chakravarthy A, Su X, Boshoff C, Fenton TR. 2014. APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumor development. Cell Rep 7:1833–1841. https://doi.org/10.1016/j.celrep.2014.05.012.
  • Pettersen HS, Galashevskaya A, Doseth B, Sousa MML, Sarno A, Visnes T, Aas PA, Liabakk N-B, Slupphaug G, Sætrom P, Kavli B, Krokan HE. 2015. AID expression in B-cell lymphomas causes accumulation of genomic uracil and a distinct AID mutational signature. DNA Repair (Amst) 25:60–71. https://doi.org/10.1016/j.dnarep.2014.11.006.
  • Suspene R, Aynaud MM, Guetard D, Henry M, Eckhoff G, Marchio A, Pineau P, Dejean A, Vartanian JP, Wain-Hobson S. 2011. Somatic hypermutation of human mitochondrial and nuclear DNA by APOBEC3 cytidine deaminases, a pathway for DNA catabolism. Proc Natl Acad Sci U S A 108:4858–4863. https://doi.org/10.1073/pnas.1009687108.
  • Land AM, Wang J, Law EK, Aberle R, Kirmaier A, Krupp A, Johnson WE, Harris RS. 2015. Degradation of the cancer genomic DNA deaminase APOBEC3B by SIV Vif. Oncotarget 6:39969–39979. https://doi.org/10.18632/oncotarget.5483.
  • Stenglein MD, Burns MB, Li M, Lengyel J, Harris RS. 2010. APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nat Struct Mol Biol 17:222–229. https://doi.org/10.1038/nsmb.1744.
  • Han J, Kim S, Yang JH, Nam SJ, Lee JE. 2012. TPA-induced p21 expression augments G2/M arrest through a p53-independent mechanism in human breast cancer cells. Oncol Rep 27:517–522. https://doi.org/10.3892/or.2011.1511.
  • Kikkawa U, Takai Y, Tanaka Y, Miyake R, Nishizuka Y. 1983. Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters. J Biol Chem 258:11442–11445.
  • Koeffler HP. 1981. Human myelogenous leukemia: enhanced clonal proliferation in the presence of phorbol diesters. Blood 57:256–260.
  • Kosaka C, Sasaguri T, Ishida A, Ogata J. 1996. Cell cycle arrest in the G2 phase induced by phorbol ester and diacylglycerol in vascular endothelial cells. Am J Physiol 270:C170–C178. https://doi.org/10.1152/ajpcell.1996.270.1.C170.
  • Parkinson EK, Emmerson A. 1982. The effects of tumour promoters on the multiplication and morphology of cultured human epidermal keratinocytes. Carcinogenesis 3:525–531. https://doi.org/10.1093/carcin/3.5.525.
  • Tahara E, Kadara H, Lacroix L, Lotan D, Lotan R. 2009. Activation of protein kinase C by phorbol 12-myristate 13-acetate suppresses the growth of lung cancer cells through KLF6 induction. Cancer Biol Ther 8:801–807. https://doi.org/10.4161/cbt.8.9.8186.
  • Wille JJ, Jr, Pittelkow MR, Scott RE. 1985. Normal and transformed human prokeratinocytes express divergent effects of a tumor promoter on cell cycle-mediated control of proliferation and differentiation. Carcinogenesis 6:1181–1187. https://doi.org/10.1093/carcin/6.8.1181.
  • Nakagawa M, Oliva JL, Kothapalli D, Fournier A, Assoian RK, Kazanietz MG. 2005. Phorbol ester-induced G1 phase arrest selectively mediated by protein kinase Cδ-dependent induction of p21. J Biol Chem 280:33926–33934. https://doi.org/10.1074/jbc.M505748200.
  • Blagosklonny MV. 2003. Cell senescence and hypermitogenic arrest. EMBO Rep 4:358–362. https://doi.org/10.1038/sj.embor.embor806.
  • Robbiani DF, Bothmer A, Callen E, Reina-San-Martin B, Dorsett Y, Difilippantonio S, Bolland DJ, Chen HT, Corcoran AE, Nussenzweig A, Nussenzweig MC. 2008. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 135:1028–1038. https://doi.org/10.1016/j.cell.2008.09.062.
  • Rebhandl S, Huemer M, Greil R, Geisberger R. 2015. AID/APOBEC deaminases and cancer. Oncoscience 2:320–333. https://doi.org/10.18632/oncoscience.155.
  • Han Y, Wang X, Dang Y, Zheng YH. 2008. APOBEC3G and APOBEC3F require an endogenous cofactor to block HIV-1 replication. PLoS Pathog 4:e1000095. https://doi.org/10.1371/journal.ppat.1000095.
  • Wichroski MJ, Robb GB, Rana TM. 2006. Human retroviral host restriction factors APOBEC3G and APOBEC3F localize to mRNA processing bodies. PLoS Pathog 2:e41. https://doi.org/10.1371/journal.ppat.0020041.
  • Nikkila J, Kumar R, Campbell J, Brandsma I, Pemberton HN, Wallberg F, Nagy K, Scheer I, Vertessy BG, Serebrenik AA, Monni V, Harris RS, Pettitt SJ, Ashworth A, Lord CJ. 2017. Elevated APOBEC3B expression drives a kataegic-like mutation signature and replication stress-related therapeutic vulnerabilities in p53-defective cells. Br J Cancer 117:113–123. https://doi.org/10.1038/bjc.2017.133.
  • Piboonniyom SO, Duensing S, Swilling NW, Hasskarl J, Hinds PW, Munger K. 2003. Abrogation of the retinoblastoma tumor suppressor checkpoint during keratinocyte immortalization is not sufficient for induction of centrosome-mediated genomic instability. Cancer Res 63:476–483.
  • Wijesinghe P, Bhagwat AS. 2012. Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G. Nucleic Acids Res 40:9206–9217. https://doi.org/10.1093/nar/gks685.
  • Siriwardena SU, Guruge TA, Bhagwat AS. 2015. Characterization of the catalytic domain of human APOBEC3B and the critical structural role for a conserved methionine. J Mol Biol 427:3042–3055. https://doi.org/10.1016/j.jmb.2015.08.006.
  • Thielen BK, McNevin JP, McElrath MJ, Hunt BV, Klein KC, Lingappa JR. 2010. Innate immune signaling induces high levels of TC-specific deaminase activity in primary monocyte-derived cells through expression of APOBEC3A isoforms. J Biol Chem 285:27753–27766. https://doi.org/10.1074/jbc.M110.102822.
  • Carpenter MA, Li M, Rathore A, Lackey L, Law EK, Land AM, Leonard B, Shandilya SM, Bohn MF, Schiffer CA, Brown WL, Harris RS. 2012. Methylcytosine and normal cytosine deamination by the foreign DNA restriction enzyme APOBEC3A. J Biol Chem 287:34801–34808. https://doi.org/10.1074/jbc.M112.385161.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.