40
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Mice Deficient in lysophosphatidic acid acyltransferase delta (Lpaatδ)/acylglycerophosphate acyltransferase 4 (Agpat4) Have Impaired Learning and Memory

, , , , , , , , & show all
Article: e00245-17 | Received 08 May 2017, Accepted 07 Aug 2017, Published online: 18 Mar 2023

REFERENCES

  • Kennedy EP, Weiss SB. 1956. The function of cytidine coenzymes in the biosynthesis of phospholipids. J Biol Chem 222:193–214.
  • Yamashita A, Hayashi Y, Matsumoto N, Nemoto-Sasaki Y, Oka S, Tanikawa T, Sugiura T. 2014. Glycerophosphate/acylglycerophosphate acyltransferases. Biology 3:801–830. https://doi.org/10.3390/biology3040801.
  • Kitson AP, Stark KD, Duncan RE. 2012. Enzymes in brain phospholipid docosahexaenoic acid accretion: a PL-ethora of potential PL-ayers. Prostaglandins Leukot Essent Fatty Acids 87:1–10. https://doi.org/10.1016/j.plefa.2012.06.001.
  • Bradley RM, Mardian EB, Moes KA, Duncan RE. 2017. Acute fasting induces expression of acylglycerophosphate acyltransferase (AGPAT) enzymes in murine liver, heart, and brain. Lipids 52:457–461. https://doi.org/10.1007/s11745-017-4251-4.
  • Bradley RM, Mardian EB, Marvyn PM, Vasefi MS, Beazely MA, Mielke JG, Duncan RE. 2016. Data on acylglycerophosphate acyltransferase 4 (AGPAT4) during murine embryogenesis and in embryo-derived cultured primary neurons and glia. Data Brief 6:28–32. https://doi.org/10.1016/j.dib.2015.11.033.
  • Bradley RM, Marvyn PM, Aristizabal Henao JJ, Mardian EB, George S, Aucoin MG, Stark KD, Duncan RE. 2015. Acylglycerophosphate acyltransferase 4 (AGPAT4) is a mitochondrial lysophosphatidic acid acyltransferase that regulates brain phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol levels. Biochim Biophys Acta 1851:1566–1576. https://doi.org/10.1016/j.bbalip.2015.09.005.
  • Eto M, Shindou H, Shimizu T. 2014. A novel lysophosphatidic acid acyltransferase enzyme (LPAAT4) with a possible role for incorporating docosahexaenoic acid into brain glycerophospholipids. Biochem Biophys Res Commun 443:718–724. https://doi.org/10.1016/j.bbrc.2013.12.043.
  • Daum G. 1985. Lipids of mitochondria. Biochim Biophys Acta 822:1–42. https://doi.org/10.1016/0304-4157(85)90002-4.
  • Diagne A, Fauvel J, Record M, Chap H, Douste-Blazy L. 1984. Studies on ether phospholipids. II. Comparative composition of various tissues from human, rat and guinea pig. Biochim Biophys Acta 793:221–231.
  • Modi HR, Katyare SS, Patel MA. 2008. Ageing-induced alterations in lipid/phospholipid profiles of rat brain and liver mitochondria: implications for mitochondrial energy-linked functions. J Membr Biol 221:51–60. https://doi.org/10.1007/s00232-007-9086-0.
  • Zhang Y, McCartney AJ, Zolov SN, Ferguson CJ, Meisler MH, Sutton MA, Weisman LS. 2012. Modulation of synaptic function by VAC14, a protein that regulates the phosphoinositides PI(3,5)P(2) and PI(5)P. EMBO J 31:3442–3456. https://doi.org/10.1038/emboj.2012.200.
  • Vicinanza M, D'Angelo G, Di Campli A, De Matteis MA. 2008. Function and dysfunction of the PI system in membrane trafficking. EMBO J 27:2457–2470. https://doi.org/10.1038/emboj.2008.169.
  • Ueno T, Falkenburger BH, Pohlmeyer C, Inoue T. 2011. Triggering actin comets versus membrane ruffles: distinctive effects of phosphoinositides on actin reorganization. Sci Signal 4:ra87. https://doi.org/10.1126/scisignal.2002033.
  • Sanna PP, Cammalleri M, Berton F, Simpson C, Lutjens R, Bloom FE, Francesconi W. 2002. Phosphatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region. J Neurosci 22:3359–3365.
  • Arendt KL, Royo M, Fernandez-Monreal M, Knafo S, Petrok CN, Martens JR, Esteban JA. 2010. PIP3 controls synaptic function by maintaining AMPA receptor clustering at the postsynaptic membrane. Nat Neurosci 13:36–44. https://doi.org/10.1038/nn.2462.
  • Wells K, Farooqui AA, Liss L, Horrocks LA. 1995. Neural membrane phospholipids in Alzheimer disease. Neurochem Res 20:1329–1333. https://doi.org/10.1007/BF00992508.
  • Lim SY, Suzuki H. 2008. Dietary phosphatidylcholine improves maze-learning performance in adult mice. J Med Food 11:86–90. https://doi.org/10.1089/jmf.2007.060.
  • Zeisel SH. 2006. Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr 26:229–250. https://doi.org/10.1146/annurev.nutr.26.061505.111156.
  • Zeisel SH. 1992. Choline: an important nutrient in brain development, liver function and carcinogenesis. J Am Coll Nutr 11:473–481. https://doi.org/10.1080/07315724.1992.10718251.
  • Kubo K, Saito M, Tadokoro T, Maekawa A. 2000. Preferential incorporation of docosahexaenoic acid into nonphosphorus lipids and phosphatidylethanolamine protects rats from dietary DHA-stimulated lipid peroxidation. J Nutr 130:1749–1759.
  • Sastry PS. 1985. Lipids of nervous tissue: composition and metabolism. Prog Lipid Res 24:69–176. https://doi.org/10.1016/0163-7827(85)90011-6.
  • Mita T, Mayanagi T, Ichijo H, Fukumoto K, Otsuka K, Sakai A, Sobue K. 2016. Docosahexaenoic acid promotes axon outgrowth by translational regulation of Tau and collapsin response mediator protein 2 expression. J Biol Chem 291:4955–4965. https://doi.org/10.1074/jbc.M115.693499.
  • Cao D, Kevala K, Kim J, Moon HS, Jun SB, Lovinger D, Kim HY. 2009. Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function. J Neurochem 111:510–521. https://doi.org/10.1111/j.1471-4159.2009.06335.x.
  • Su HM. 2010. Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance. J Nutr Biochem 21:364–373. https://doi.org/10.1016/j.jnutbio.2009.11.003.
  • Gamoh S, Hashimoto M, Sugioka K, Shahdat Hossain M, Hata N, Misawa Y, Masumura S. 1999. Chronic administration of docosahexaenoic acid improves reference memory-related learning ability in young rats. Neuroscience 93:237–241. https://doi.org/10.1016/S0306-4522(99)00107-4.
  • Petursdottir AL, Farr SA, Morley JE, Banks WA, Skuladottir GV. 2008. Effect of dietary n-3 polyunsaturated fatty acids on brain lipid fatty acid composition, learning ability, and memory of senescence-accelerated mouse. J Gerontol A Biol Sci Med Sci 63:1153–1160. https://doi.org/10.1093/gerona/63.11.1153.
  • Xiao Y, Wang L, Xu R, Chen Z. 2006. DHA depletion in rat brain is associated with impairment on spatial learning and memory. Biomed Environ Sci 19:474.
  • Cao X, Cui Z, Feng R, Tang YP, Qin Z, Mei B, Tsien JZ. 2007. Maintenance of superior learning and memory function in NR2B transgenic mice during ageing. Eur J Neurosci 25:1815–1822. https://doi.org/10.1111/j.1460-9568.2007.05431.x.
  • Ng D, Pitcher GM, Szilard RK, Sertie A, Kanisek M, Clapcote SJ, Lipina T, Kalia LV, Joo D, McKerlie C, Cortez M, Roder JC, Salter MW, McInnes RR. 2009. Neto1 is a novel CUB-domain NMDA receptor-interacting protein required for synaptic plasticity and learning. PLoS Biol 7:e41. https://doi.org/10.1371/journal.pbio.1000041.
  • Lopez J, Gamache K, Schneider R, Nader K. 2015. Memory retrieval requires ongoing protein synthesis and NMDA receptor activity-mediated AMPA receptor trafficking. J Neurosci 35:2465–2475. https://doi.org/10.1523/JNEUROSCI.0735-14.2015.
  • Morris RG, Steele RJ, Bell JE, Martin SJ. 2013. N-methyl-d-aspartate receptors, learning and memory: chronic intraventricular infusion of the NMDA receptor antagonist d-AP5 interacts directly with the neural mechanisms of spatial learning. Eur J Neurosci 37:700–717. https://doi.org/10.1111/ejn.12086.
  • Michailidis IE, Helton TD, Petrou VI, Mirshahi T, Ehlers MD, Logothetis DE. 2007. Phosphatidylinositol-4,5-bisphosphate regulates NMDA receptor activity through alpha-actinin. J Neurosci 27:5523–5532. https://doi.org/10.1523/JNEUROSCI.4378-06.2007.
  • Mandal M, Yan Z. 2009. Phosphatidylinositol (4,5)-bisphosphate regulation of N-methyl-d-aspartate receptor channels in cortical neurons. Mol Pharmacol 76:1349–1359. https://doi.org/10.1124/mol.109.058701.
  • Heras-Sandoval D, Perez-Rojas JM, Hernandez-Damian J, Pedraza-Chaverri J. 2014. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 26:2694–2701. https://doi.org/10.1016/j.cellsig.2014.08.019.
  • Norrmen C, Suter U. 2013. Akt/mTOR signalling in myelination. Biochem Soc Trans 41:944–950. https://doi.org/10.1042/BST20130046.
  • Ahn JY. 2014. Neuroprotection signaling of nuclear akt in neuronal cells. Exp Neurobiol 23:200–206. https://doi.org/10.5607/en.2014.23.3.200.
  • Yang PC, Yang CH, Huang CC, Hsu KS. 2008. Phosphatidylinositol 3-kinase activation is required for stress protocol-induced modification of hippocampal synaptic plasticity. J Biol Chem 283:2631–2643. https://doi.org/10.1074/jbc.M706954200.
  • Tao R, Gong J, Luo X, Zang M, Guo W, Wen R, Luo Z. 2010. AMPK exerts dual regulatory effects on the PI3K pathway. J Mol Signal 5:1. https://doi.org/10.1186/1750-2187-5-1.
  • Kovacina KS, Park GY, Bae SS, Guzzetta AW, Schaefer E, Birnbaum MJ, Roth RA. 2003. Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J Biol Chem 278:10189–10194. https://doi.org/10.1074/jbc.M210837200.
  • Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM. 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–1501. https://doi.org/10.1126/science.1157535.
  • Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL. 2008. Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10:935–945. https://doi.org/10.1038/ncb1753.
  • Jones JPIII, Meck HW, Williams CL, Wilson WA, Swartzwelder HS. 1999. Choline availability to the developing rat fetus alters adult hippocampal long-term potentiation. Brain Res Dev Brain Res 118:159–167. https://doi.org/10.1016/S0165-3806(99)00103-0.
  • Cooke SF, Bliss TV. 2006. Plasticity in the human central nervous system. Brain 129:1659–1673. https://doi.org/10.1093/brain/awl082.
  • Bliss TV, Collingridge GL. 1993. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39. https://doi.org/10.1038/361031a0.
  • Witcher MR, Kirov SA, Harris KM. 2007. Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus. Glia 55:13–23. https://doi.org/10.1002/glia.20415.
  • Stubbs CD, Smith AD. 1984. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta 779:89–137. https://doi.org/10.1016/0304-4157(84)90005-4.
  • Bradley RM, Stark KD, Duncan RE. 2016. Influence of tissue, diet, and enzymatic remodeling on cardiolipin fatty acyl profile. Mol Nutr Food Res 60:1804–1818. https://doi.org/10.1002/mnfr.201500966.
  • Hancock SE, Friedrich MG, Mitchell TW, Truscott RJ, Else PL. 2015. Decreases in phospholipids containing adrenic and arachidonic acids occur in the human hippocampus over the adult lifespan. Lipids 50:861–872. https://doi.org/10.1007/s11745-015-4030-z.
  • Norris SE, Friedrich MG, Mitchell TW, Truscott RJ, Else PL. 2015. Human prefrontal cortex phospholipids containing docosahexaenoic acid increase during normal adult aging, whereas those containing arachidonic acid decrease. Neurobiol Aging 36:1659–1669. https://doi.org/10.1016/j.neurobiolaging.2015.01.002.
  • de Groot RH, Hornstra G, Jolles J. 2007. Exploratory study into the relation between plasma phospholipid fatty acid status and cognitive performance. Prostaglandins Leukot Essent Fatty Acids 76:165–172. https://doi.org/10.1016/j.plefa.2007.01.001.
  • Sumich AL, Matsudaira T, Heasman B, Gow RV, Ibrahimovic A, Ghebremeskel K, Crawford MA, Taylor E. 2013. Fatty acid correlates of temperament in adolescent boys with attention deficit hyperactivity disorder. Prostaglandins Leukot Essent Fatty Acids 88:431–436. https://doi.org/10.1016/j.plefa.2013.03.004.
  • Yui K, Imataka G, Kawasaki Y, Yamada H. 2016. Increased omega-3 polyunsaturated fatty acid/arachidonic acid ratios and upregulation of signaling mediator in individuals with autism spectrum disorders. Life Sci 145:205–212. https://doi.org/10.1016/j.lfs.2015.12.039.
  • Yui K, Imataka G, Kawasaki Y, Yamada H. 2016. Down-regulation of a signaling mediator in association with lowered plasma arachidonic acid levels in individuals with autism spectrum disorders. Neurosci Lett 610:223–228. https://doi.org/10.1016/j.neulet.2015.11.006.
  • Chen HC, Ziemba BP, Landgraf KE, Corbin JA, Falke JJ. 2012. Membrane docking geometry of GRP1 PH domain bound to a target lipid bilayer: an EPR site-directed spin-labeling and relaxation study. PLoS One 7:e33640. https://doi.org/10.1371/journal.pone.0033640.
  • Rhee SG, Choi KD. 1992. Regulation of inositol phospholipid-specific phospholipase C isozymes. J Biol Chem 267:12393–12396.
  • Groc L, Choquet D. 2006. AMPA and NMDA glutamate receptor trafficking: multiple roads for reaching and leaving the synapse. Cell Tissue Res 326:423–438. https://doi.org/10.1007/s00441-006-0254-9.
  • Kim R, Moki R, Kida S. 2011. Molecular mechanisms for the destabilization and restabilization of reactivated spatial memory in the Morris water maze. Mol Brain 4:9. https://doi.org/10.1186/1756-6606-4-9.
  • Sakimura K, Kutsuwada T, Ito I, Manabe T, Takayama C, Kushiya E, Yagi T, Aizawa S, Inoue Y, Sugiyama H. 1995. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor 1 subunit. Nature 373:151–154. https://doi.org/10.1038/373151a0.
  • Park P, Sanderson TM, Amici M, Choi SL, Bortolotto ZA, Zhuo M, Kaang BK, Collingridge GL. 2016. Calcium-permeable AMPA receptors mediate the induction of the protein kinase A-dependent component of long-term potentiation in the hippocampus. J Neurosci 36:622–631. https://doi.org/10.1523/JNEUROSCI.3625-15.2016.
  • Zamanillo D, Sprengel R, Hvalby Ø, Jensen V, Burnashev N, Rozov A, Kaiser KMM, Köster HJ, Borchardt T, Worley P, Lübke J, Frotscher M, Kelly PH, Sommer B, Andersen P, Seeburg PH, Sakmann B. 1999. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284:1805–1811. https://doi.org/10.1126/science.284.5421.1805.
  • Malhotra AK, Pinals DA, Weingartner H, Sirocco K, David Missar C, Pickar D, Breier A. 1996. NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 14:301–307. https://doi.org/10.1016/0893-133X(95)00137-3.
  • Furukawa H, Singh SK, Mancusso R, Gouaux E. 2005. Subunit arrangement and function in NMDA receptors. Nature 438:185–192. https://doi.org/10.1038/nature04089.
  • Dyall SC, Michael GJ, Whelpton R, Scott AG, Michael-Titus AT. 2007. Dietary enrichment with omega-3 polyunsaturated fatty acids reverses age-related decreases in the GluR2 and NR2B glutamate receptor subunits in rat forebrain. Neurobiol Aging 28:424–439. https://doi.org/10.1016/j.neurobiolaging.2006.01.002.
  • Miao B, Skidan I, Yang J, Lugovskoy A, Reibarkh M, Long K, Brazell T, Durugkar KA, Maki J, Ramana CV, Schaffhausen B, Wagner G, Torchilin V, Yuan J, Degterev A. 2010. Small molecule inhibition of phosphatidylinositol-3,4,5-triphosphate (PIP3) binding to pleckstrin homology domains. Proc Natl Acad Sci U S A 107:20126–20131. https://doi.org/10.1073/pnas.1004522107.
  • Mendoza MC, Er EE, Blenis J. 2011. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 36:320–328. https://doi.org/10.1016/j.tibs.2011.03.006.
  • Sengupta S, Peterson TR, Sabatini DM. 2010. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40:310–322. https://doi.org/10.1016/j.molcel.2010.09.026.
  • Kim SY, Yoo SJ, Ronnett GV, Kim EK, Moon C. 2015. Odorant stimulation promotes survival of rodent olfactory receptor neurons via PI3K/Akt activation and Bcl-2 expression. Mol Cells 38:535–539. https://doi.org/10.14348/molcells.2015.0038.
  • Le Belle JE, Orozco NM, Paucar AA, Saxe JP, Mottahedeh J, Pyle AD, Wu H, Kornblum HI. 2011. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependent manner. Cell Stem Cell 8:59–71. https://doi.org/10.1016/j.stem.2010.11.028.
  • Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB. 2003. Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol 23:7315–7328. https://doi.org/10.1128/MCB.23.20.7315-7328.2003.
  • Akama KT, McEwen BS. 2003. Estrogen stimulates postsynaptic density-95 rapid protein synthesis via the Akt/protein kinase B pathway. J Neurosci 23:2333–2339.
  • Bergeron R, Russell RR, Young LH, Ren J-M, Marcucci M, Lee A, Shulman GI. 1999. Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am J Physiol 276:E938–E944.
  • Cota D, Proulx K, Smith KAB, Kozma SC, Thomas G, Woods SC, Seeley RJ. 2006. Hypothalamic mTOR signaling regulates food intake. Science 312:927–930. https://doi.org/10.1126/science.1124147.
  • Chen J, Fujii K, Zhang L, Roberts T, Fu H. 2001. Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK–ERK independent mechanism. Proc Natl Acad Sci U S A 98:7783–7788. https://doi.org/10.1073/pnas.141224398.
  • Yeung K, Janosch P, McFerran B, Rose DW, Mischak H, Sedivy JM, Kolch W. 2000. Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the raf kinase inhibitor protein. Mol Cell Biol 20:3079–3085. https://doi.org/10.1128/MCB.20.9.3079-3085.2000.
  • English JM, Pearson G, Hockenberry T, Shivakumar L, White MA, Cobb MH. 1999. Contribution of the ERK5/MEK5 pathway to Ras/Raf signaling and growth control. J Biol Chem 274:31588–31592. https://doi.org/10.1074/jbc.274.44.31588.
  • Zang M, Hayne C, Luo Z. 2002. Interaction between active Pak1 and Raf-1 is necessary for phosphorylation and activation of Raf-1. J Biol Chem 277:4395–4405. https://doi.org/10.1074/jbc.M110000200.
  • Morris R. 1984. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60. https://doi.org/10.1016/0165-0270(84)90007-4.
  • Vorhees CV, Williams MT. 2006. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858. https://doi.org/10.1038/nprot.2006.116.
  • Mardian EB, Bradley RM, Aristizabal Henao JJ, Marvyn PM, Moes KA, Bombardier E, Tupling AR, Stark KD, Duncan RE. 16August2017. Agpat4/Lpaatδ deficiency highlights the molecular heterogeneity of epididymal and perirenal white adipose depots. J Lipid Res. https://doi.org/10.1194/jlr.M079152.
  • Tang T, Li L, Tang J, Li Y, Lin WY, Martin F, Grant D, Solloway M, Parker L, Ye W, Forrest W, Ghilardi N, Oravecz T, Platt KA, Rice DS, Hansen GM, Abuin A, Eberhart DE, Godowski P, Holt KH, Peterson A, Zambrowicz BP, de Sauvage FJ. 2010. A mouse knockout library for secreted and transmembrane proteins. Nat Biotechnol 28:749–755. https://doi.org/10.1038/nbt.1644.
  • Lewin TM, Wang P, Coleman RA. 1999. Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry 38:5764–5771. https://doi.org/10.1021/bi982805d.
  • Chen A, Bao C, Tang Y, Luo X, Guo L, Liu B, Lin C. 2015. Involvement of protein kinase zeta in the maintenance of hippocampal long-term potentiation in rats with chronic visceral hypersensitivity. J Neurophysiol 113:3047–3055. https://doi.org/10.1152/jn.00929.2014.
  • Afshordel S, Hagl S, Werner D, Rohner N, Kogel D, Bazan NG, Eckert GP. 2015. Omega-3 polyunsaturated fatty acids improve mitochondrial dysfunction in brain aging—impact of Bcl-2 and NPD-1 like metabolites. Prostaglandins Leukot Essent Fatty Acids 92:23–31. https://doi.org/10.1016/j.plefa.2014.05.008.
  • Hagl S, Kocher A, Schiborr C, Eckert SH, Ciobanu I, Birringer M, El-Askary H, Helal A, Khayyal MT, Frank J, Muller WE, Eckert GP. 2013. Rice bran extract protects from mitochondrial dysfunction in guinea pig brains. Pharmacol Res 76:17–27. https://doi.org/10.1016/j.phrs.2013.06.008.
  • Krumschnabel G, Fontana-Ayoub M, Sumbalova Z, Heidler J, Gauper K, Fasching M, Gnaiger E. 2015. Simultaneous high-resolution measurement of mitochondrial respiration and hydrogen peroxide production. Methods Mol Biol 1264:245–261. https://doi.org/10.1007/978-1-4939-2257-4_22.
  • Folch J, Lees M, Sloane Stanley GH. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509.
  • Metherel AH, Taha AY, Izadi H, Stark KD. 2009. The application of ultrasound energy to increase lipid extraction throughput of solid matrix samples (flaxseed). Prostaglandins Leukot Essent Fatty Acids 81:417–423. https://doi.org/10.1016/j.plefa.2009.07.003.
  • Graham JM, Rickwood D. (ed). 1997. Subcellular fractionation: a practical approach. Oxford University Press, New York, NY.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.