49
Views
20
CrossRef citations to date
0
Altmetric
Article

PGC-1 Coactivator Activity Is Required for Murine Erythropoiesis

, , , , , , , , , , & show all
Pages 1956-1965 | Received 19 Feb 2014, Accepted 05 Mar 2014, Published online: 20 Mar 2023

REFERENCES

  • Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839. http://dx.doi.org/10.1016/S0092-8674(00)81410-5.
  • Knutti D, Kaul A, Kralli A. 2000. A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen. Mol. Cell. Biol. 20:2411–2422. http://dx.doi.org/10.1128/MCB.20.7.2411-2422.2000.
  • Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM. 2002. Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor. J. Biol. Chem. 277:1645–1648. http://dx.doi.org/10.1074/jbc.C100631200.
  • Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. 2000. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J. Clin. Investig. 106:847–856. http://dx.doi.org/10.1172/JCI10268.
  • St-Pierre J, Lin J, Krauss S, Tarr PT, Yang R, Newgard CB, Spiegelman BM. 2003. Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. J. Biol. Chem. 278:26597–26603. http://dx.doi.org/10.1074/jbc.M301850200.
  • Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124. http://dx.doi.org/10.1016/S0092-8674(00)80611-X.
  • Lin JD. 2009. Minireview: the PGC-1 coactivator networks: chromatin-remodeling and mitochondrial energy metabolism. Mol. Endocrinol. 23:2–10. http://dx.doi.org/10.1210/me.2008-0344.
  • Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM. 2001. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131–138. http://dx.doi.org/10.1038/35093050.
  • Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M. 2001. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413:179–183. http://dx.doi.org/10.1038/35093131.
  • Lin J, Handschin C, Spiegelman BM. 2005. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1:361–370. http://dx.doi.org/10.1016/j.cmet.2005.05.004.
  • Spiegelman BM, Heinrich R. 2004. Biological control through regulated transcriptional coactivators. Cell 119:157–167. http://dx.doi.org/10.1016/j.cell.2004.09.037.
  • Liu C, Li S, Liu T, Borjigin J, Lin JD. 2007. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447:477–481. http://dx.doi.org/10.1038/nature05767.
  • Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, Cooper M, Laznik D, Chinsomboon J, Rangwala SM, Baek KH, Rosenzweig A, Spiegelman BM. 2008. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 451:1008–1012. http://dx.doi.org/10.1038/nature06613.
  • Rowe GC, Jang C, Patten IS, Arany Z. 2011. PGC-1beta regulates angiogenesis in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 301:E155–E163. http://dx.doi.org/10.1152/ajpendo.00681.2010.
  • Rhee J, Ge H, Yang W, Fan M, Handschin C, Cooper M, Lin J, Li C, Spiegelman BM. 2006. Partnership of PGC-1alpha and HNF4alpha in the regulation of lipoprotein metabolism. J. Biol. Chem. 281:14683–14690. http://dx.doi.org/10.1074/jbc.M512636200.
  • Lai L, Leone TC, Zechner C, Schaeffer PJ, Kelly SM, Flanagan DP, Medeiros DM, Kovacs A, Kelly DP. 2008. Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. Genes Dev. 22:1948–1961. http://dx.doi.org/10.1101/gad.1661708.
  • Huss JM, Kopp RP, Kelly DP. 2002. Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and -gamma. Identification of novel leucine-rich interaction motif within PGC-1alpha. J. Biol. Chem. 277:40265–40274. http://dx.doi.org/10.1074/jbc.M206324200.
  • Vega RB, Huss JM, Kelly DP. 2000. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell. Biol. 20:1868–1876. http://dx.doi.org/10.1128/MCB.20.5.1868-1876.2000.
  • Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P. 2007. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450:736–740. http://dx.doi.org/10.1038/nature06322.
  • Zhou XE, Suino-Powell KM, Xu Y, Chan CW, Tanabe O, Kruse SW, Reynolds R, Engel JD, Xu HE. 2011. The orphan nuclear receptor TR4 is a vitamin A-activated nuclear receptor. J. Biol. Chem. 286:2877–2885. http://dx.doi.org/10.1074/jbc.M110.168740.
  • Tanabe O, Shen Y, Liu Q, Campbell AD, Kuroha T, Yamamoto M, Engel JD. 2007. The TR2 and TR4 orphan nuclear receptors repress Gata1 transcription. Genes Dev. 21:2832–2844. http://dx.doi.org/10.1101/gad.1593307.
  • Tanabe O, McPhee D, Kobayashi S, Shen Y, Brandt W, Jiang X, Campbell AD, Chen YT, Chang C, Yamamoto M, Tanimoto K, Engel JD. 2007. Embryonic and fetal beta-globin gene repression by the orphan nuclear receptors, TR2 and TR4. EMBO J. 26:2295–2306. http://dx.doi.org/10.1038/sj.emboj.7601676.
  • Tanabe O, Katsuoka F, Campbell AD, Song W, Yamamoto M, Tanimoto K, Engel JD. 2002. An embryonic/fetal beta-type globin gene repressor contains a nuclear receptor TR2/TR4 heterodimer. EMBO J. 21:3434–3442. http://dx.doi.org/10.1093/emboj/cdf340.
  • Cui S, Kolodziej KE, Obara N, Amaral-Psarris A, Demmers J, Shi L, Engel JD, Grosveld F, Strouboulis J, Tanabe O. 2011. Nuclear receptors TR2 and TR4 recruit multiple epigenetic transcriptional corepressors that associate specifically with the embryonic beta-type globin promoters in differentiated adult erythroid cells. Mol. Cell. Biol. 31:3298–3311. http://dx.doi.org/10.1128/MCB.05310-11.
  • Campbell AD, Cui S, Shi L, Urbonya R, Mathias A, Bradley K, Bonsu KO, Douglas RR, Halford B, Schmidt L, Harro D, Giacherio D, Tanimoto K, Tanabe O, Engel JD. 2011. Forced TR2/TR4 expression in sickle cell disease mice confers enhanced fetal hemoglobin synthesis and alleviated disease phenotypes. Proc. Natl. Acad. Sci. U. S. A. 108:18808–18813. http://dx.doi.org/10.1073/pnas.1104964108.
  • Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jager S, Vianna CR, Reznick RM, Cui L, Manieri M, Donovan MX, Wu Z, Cooper MP, Fan MC, Rohas LM, Zavacki AM, Cinti S, Shulman GI, Lowell BB, Krainc D, Spiegelman BM. 2004. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119:121–135. http://dx.doi.org/10.1016/j.cell.2004.09.013.
  • Vianna CR, Huntgeburth M, Coppari R, Choi CS, Lin J, Krauss S, Barbatelli G, Tzameli I, Kim YB, Cinti S, Shulman GI, Spiegelman BM, Lowell BB. 2006. Hypomorphic mutation of PGC-1beta causes mitochondrial dysfunction and liver insulin resistance. Cell Metab. 4:453–464. http://dx.doi.org/10.1016/j.cmet.2006.11.003.
  • Cui SY, Xu WH. 2006. Molecular characterization and functional distribution of N-ethylmaleimide-sensitive factor in Helicoverpa armigera. Peptides 27:1226–1234. http://dx.doi.org/10.1016/j.peptides.2005.11.011.
  • Kato K, Cui S, Kuick R, Mineishi S, Hexner E, Ferrara JL, Emerson SG, Zhang Y. 2010. Identification of stem cell transcriptional programs normally expressed in embryonic and neural stem cells in alloreactive CD8+ T cells mediating graft-versus-host disease. Biol. Blood Marrow Transplant. 16:751–771. http://dx.doi.org/10.1016/j.bbmt.2010.01.012.
  • Zhang Y, Sandy AR, Wang J, Radojcic V, Shan GT, Tran IT, Friedman A, Kato K, He S, Cui S, Hexner E, Frank DM, Emerson SG, Pear WS, Maillard I. 2011. Notch signaling is a critical regulator of allogeneic CD4+ T-cell responses mediating graft-versus-host disease. Blood 117:299–308. http://dx.doi.org/10.1182/blood-2010-03-271940.
  • Palis J, Segel GB. 1998. Developmental biology of erythropoiesis. Blood Rev. 12:106–114. http://dx.doi.org/10.1016/S0268-960X(98)90022-4.
  • Lesley J, Hyman R, Schulte R, Trotter J. 1984. Expression of transferrin receptor on murine hematopoietic progenitors. Cell. Immunol. 83:14–25. http://dx.doi.org/10.1016/0008-8749(84)90220-X.
  • Kina T, Ikuta K, Takayama E, Wada K, Majumdar AS, Weissman IL, Katsura Y. 2000. The monoclonal antibody TER-119 recognizes a molecule associated with glycophorin A and specifically marks the late stages of murine erythroid lineage. Br. J. Haematol. 109:280–287. http://dx.doi.org/10.1046/j.1365-2141.2000.02037.x.
  • Shuga J, Zhang J, Samson LD, Lodish HF, Griffith LG. 2007. In vitro erythropoiesis from bone marrow-derived progenitors provides a physiological assay for toxic and mutagenic compounds. Proc. Natl. Acad. Sci. U. S. A. 104:8737–8742. http://dx.doi.org/10.1073/pnas.0701829104.
  • Fleming TJ, Fleming ML, Malek TR. 1993. Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6–8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. J. Immunol. 151:2399–2408.
  • Leenen PJ, de Bruijn MF, Voerman JS, Campbell PA, van Ewijk W. 1994. Markers of mouse macrophage development detected by monoclonal antibodies. J. Immunol. Methods 174:5–19. http://dx.doi.org/10.1016/0022-1759(94)90005-1.
  • Serafini P, De Santo C, Marigo I, Cingarlini S, Dolcetti L, Gallina G, Zanovello P, Bronte V. 2004. Derangement of immune responses by myeloid suppressor cells. Cancer Immunol. Immunother. 53:64–72. http://dx.doi.org/10.1007/s00262-003-0443-2.
  • Gordon S, Taylor PR. 2005. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5:953–964. http://dx.doi.org/10.1038/nri1733.
  • Constantino BT, Cogionis B. 2000. Nucleated RBCs–significance in the peripheral blood film. Lab. Med. 31:223–229. http://dx.doi.org/10.1309/D70F-HCC1-XX1T-4ETE.
  • Lin JD, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jager S, Vianna CR, Reznick RM, Cui LB, Manieri M, Donovan MX, Wu ZD, Cooper MP, Fan MC, Rohas LM, Zavacki AM, Cinti S, Shulman GI, Lowell BB, Krainc D, Spiegelman BM. 2004. Defects in adaptive energy metabolism with CNS-Linked hyperactivity in PGC-1 alpha null mice. Cell 119:121–135. http://dx.doi.org/10.1016/j.cell.2004.09.013.
  • McConnell SC, Huo Y, Liu S, Ryan TM. 2011. Human globin knock-in mice complete fetal-to-adult hemoglobin switching in postnatal development. Mol. Cell. Biol. 31:876–883. http://dx.doi.org/10.1128/MCB.00725-10.
  • Kiefer CM, Hou C, Little JA, Dean A. 2008. Epigenetics of beta-globin gene regulation. Mutat. Res. 647:68–76. http://dx.doi.org/10.1016/j.mrfmmm.2008.07.014.
  • Marcus SJ, Kinney TR, Schultz WH, O'Branski EE, Ware RE. 1997. Quantitative analysis of erythrocytes containing fetal hemoglobin (F cells) in children with sickle cell disease. Am. J. Hematol. 54:40–46. http://dx.doi.org/10.1002/(SICI)1096-8652(199701)54:1<40::AID-AJH6>3.0.CO;2-4.
  • Papadakis MN, Patrinos GP, Tsaftaridis P, Loutradi-Anagnostou A. 2002. A comparative study of Greek nondeletional hereditary persistence of fetal hemoglobin and beta-thalassemia compound heterozygotes. J. Mol. Med. (Berlin) 80:243–247. http://dx.doi.org/10.1007/s00109-001-0312-4.
  • Lopez RA, Schoetz S, DeAngelis K, O'Neill D, Bank A. 2002. Multiple hematopoietic defects and delayed globin switching in Ikaros null mice. Proc. Natl. Acad. Sci. U. S. A. 99:602–607. http://dx.doi.org/10.1073/pnas.022412699.
  • Harju-Baker S, Costa FC, Fedosyuk H, Neades R, Peterson KR. 2008. Silencing of Agamma-globin gene expression during adult definitive erythropoiesis mediated by GATA-1-FOG-1-Mi2 complex binding at the −566 GATA site. Mol. Cell. Biol. 28:3101–3113. http://dx.doi.org/10.1128/MCB.01858-07.
  • Sankaran VG, Menne TF, Xu J, Akie TE, Lettre G, Van Handel B, Mikkola HK, Hirschhorn JN, Cantor AB, Orkin SH. 2008. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 322:1839–1842. http://dx.doi.org/10.1126/science.1165409.
  • Borg J, Papadopoulos P, Georgitsi M, Gutierrez L, Grech G, Fanis P, Phylactides M, Verkerk AJ, van der Spek PJ, Scerri CA, Cassar W, Galdies R, van Ijcken W, Ozgur Z, Gillemans N, Hou J, Bugeja M, Grosveld FG, von Lindern M, Felice AE, Patrinos GP, Philipsen S. 2010. Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin. Nat. Genet. 42:801–805. http://dx.doi.org/10.1038/ng.630.
  • Zhou D, Liu K, Sun CW, Pawlik KM, Townes TM. 2010. KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching. Nat. Genet. 42:742–744. http://dx.doi.org/10.1038/ng.637.
  • van Dijk TB, Gillemans N, Pourfarzad F, van Lom K, von Lindern M, Grosveld F, Philipsen S. 2010. Fetal globin expression is regulated by Friend of Prmt1. Blood 116:4349–4352. http://dx.doi.org/10.1182/blood-2010-03-274399.
  • Sankaran VG, Menne TF, Scepanovic D, Vergilio JA, Ji P, Kim J, Thiru P, Orkin SH, Lander ES, Lodish HF. 2011. MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13. Proc. Natl. Acad. Sci. U. S. A. 108:1519–1524. http://dx.doi.org/10.1073/pnas.1018384108.
  • Aerbajinai W, Zhu J, Kumkhaek C, Chin K, Rodgers GP. 2009. SCF induces gamma-globin gene expression by regulating downstream transcription factor COUP-TFII. Blood 114:187–194. http://dx.doi.org/10.1182/blood-2008-07-170712.
  • Omori A, Tanabe O, Engel JD, Fukamizu A, Tanimoto K. 2005. Adult stage gamma-globin silencing is mediated by a promoter direct repeat element. Mol. Cell. Biol. 25:3443–3451. http://dx.doi.org/10.1128/MCB.25.9.3443-3451.2005.
  • Tanimoto K, Liu Q, Grosveld F, Bungert J, Engel JD. 2000. Context-dependent EKLF responsiveness defines the developmental specificity of the human epsilon-globin gene in erythroid cells of YAC transgenic mice. Genes Dev. 14:2778–2794. http://dx.doi.org/10.1101/gad.822500.
  • Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, Wagner RA, Greaves DR, Murray PJ, Chawla A. 2006. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 4:13–24. http://dx.doi.org/10.1016/j.cmet.2006.05.011.
  • Nemoto S, Fergusson MM, Finkel T. 2005. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1alpha. J. Biol. Chem. 280:16456–16460. http://dx.doi.org/10.1074/jbc.M501485200.
  • Puigserver P, Spiegelman BM. 2003. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr. Rev. 24:78–90. http://dx.doi.org/10.1210/er.2002-0012.
  • Mu XM, Young WJ, Liu YX, Uemura H, Chang CS. 1998. Induction of an intronic enhancer of the human ciliary neurotrophic factor receptor (CNTFR alpha) gene by the TR3 orphan receptor. Endocrine 9:27–32. http://dx.doi.org/10.1385/ENDO:9:1:27.
  • Wei LN, Hu XL, Chinpaisal C. 2000. Constitutive activation of retinoic acid receptor beta 2 promoter by orphan nuclear receptor TR2. J. Biol. Chem. 275:11907–11914. http://dx.doi.org/10.1074/jbc.275.16.11907.
  • Young WJ, Smith SM, Chang CS. 1997. Induction of the intronic enhancer of the human ciliary neurotrophic factor receptor (CNTFR alpha) gene by the TR4 orphan receptor–a member of steroid receptor superfamily. J. Biol. Chem. 272:3109–3116. http://dx.doi.org/10.1074/jbc.272.5.3109.
  • Khan SA, Park SW, Huq MDM, Wei LN. 2006. Ligand-independent orphan receptor TR2 activation by phosphorylation at the DNA-binding domain. Proteomics 6:123–130. http://dx.doi.org/10.1002/pmic.200500068.
  • Zhang Y, Dufau ML. 2000. Nuclear orphan receptors regulate transcription of the gene for the human luteinizing hormone receptor. J. Biol. Chem. 275:2763–2770. http://dx.doi.org/10.1074/jbc.275.4.2763.
  • Shi L, Cui S, Engel JD, Tanabe O. 2013. Lysine-specific demethylase 1 is a therapeutic target for fetal hemoglobin induction. Nat. Med. 19:291–294. http://dx.doi.org/10.1038/nm.3101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.