56
Views
63
CrossRef citations to date
0
Altmetric
Article

Protein Kinase A Represses Skeletal Myogenesis by Targeting Myocyte Enhancer Factor 2D

, , , , , , , , & show all
Pages 2952-2970 | Received 14 Feb 2008, Accepted 19 Feb 2008, Published online: 27 Mar 2023

REFERENCES

  • Akkila, W. M., R. L. Chambers, O. I. Ornatsky, and J. C. McDermott. 1997. Molecular cloning of up-regulated cytoskeletal genes from regenerating skeletal muscle: potential role of myocyte enhancer factor 2 proteins in the activation of muscle-regeneration-associated genes. Biochem. J. 325:87–93.
  • Amacher, S. L., J. N. Buskin, and S. D. Hauschka. 1993. Multiple regulatory elements contribute differentially to muscle creatine kinase enhancer activity in skeletal and cardiac muscle. Mol. Cell. Biol. 13:2753–2764.
  • Anderson, J. P., E. Dodou, A. B. Heidt, S. J. De Val, E. J. Jaehnig, S. B. Greene, E. N. Olson, and B. L. Black. 2004. HRC is a direct transcriptional target of MEF2 during cardiac, skeletal, and arterial smooth muscle development in vivo. Mol. Cell. Biol. 24:3757–3768.
  • Arnold, H. H., and B. Winter. 1998. Muscle differentiation: more complexity to the network of myogenic regulators. Curr. Opin. Genet. Dev. 8:539–544.
  • Belfield, J. L., C. Whittaker, M. Z. Cader, and S. Chawla. 2006. Differential effects of Ca2+ and cAMP on transcription mediated by MEF2D and cAMP-response element-binding protein in hippocampal neurons. J. Biol. Chem. 281:27724–27732.
  • Berdeaux, R., N. Goebel, L. Banaszynski, H. Takemori, T. Wandless, G. D. Shelton, and M. Montminy. 2007. SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nat. Med. 13:597–603.
  • Black, B. L., and E. N. Olson. 1998. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu. Rev. Cell Dev. Biol. 14:167–196.
  • Brand-Saberi, B. 2005. Genetic and epigenetic control of skeletal muscle development. Ann. Anat. 187:199–207.
  • Buckingham, M. 2006. Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr. Opin. Genet. Dev. 16:525–532.
  • Buckingham, M. 2001. Skeletal muscle formation in vertebrates. Curr. Opin. Genet. Dev. 11:440–448.
  • Chen, A. E., D. D. Ginty, and C. M. Fan. 2005. Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature 433:317–322.
  • Cox, D. M., M. Du, X. Guo, K. W. Siu, and J. C. McDermott. 2002. Tandem affinity purification of protein complexes from mammalian cells. BioTechniques 33:267–270.
  • Cox, D. M., M. Du, M. Marback, E. C. Yang, J. Chan, K. W. Siu, and J. C. McDermott. 2003. Phosphorylation motifs regulating the stability and function of myocyte enhancer factor 2A. J. Biol. Chem. 278:15297–15303.
  • Creemers, E. E., L. B. Sutherland, J. McAnally, J. A. Richardson, and E. N. Olson. 2006. Myocardin is a direct transcriptional target of Mef2, Tead and Foxo proteins during cardiovascular development. Development 133:4245–4256.
  • Creemers, E. E., L. B. Sutherland, J. Oh, A. C. Barbosa, and E. N. Olson. 2006. Coactivation of MEF2 by the SAP domain proteins myocardin and MASTR. Mol. Cell 23:83–96.
  • Currie, P. D., and P. W. Ingham. 1998. The generation and interpretation of positional information within the vertebrate myotome. Mech. Dev. 73:3–21.
  • de Angelis, L., J. Zhao, J. J. Andreucci, E. N. Olson, G. Cossu, and J. C. McDermott. 2005. Regulation of vertebrate myotome development by the p38 MAP kinase-MEF2 signaling pathway. Dev. Biol. 283:171–179.
  • Donoviel, D. B., M. A. Shield, J. N. Buskin, H. S. Haugen, C. H. Clegg, and S. D. Hauschka. 1996. Analysis of muscle creatine kinase gene regulatory elements in skeletal and cardiac muscles of transgenic mice. Mol. Cell. Biol. 16:1649–1658.
  • Edmondson, D. G., G. E. Lyons, J. F. Martin, and E. N. Olson. 1994. Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development 120:1251–1263.
  • Ewton, D. Z., and J. R. Florini. 1990. Effects of insulin-like growth factors and transforming growth factor-beta on the growth and differentiation of muscle cells in culture. Proc. Soc. Exp. Biol. Med. 194:76–80.
  • Florini, J. R., D. Z. Ewton, and K. A. Magri. 1991. Hormones, growth factors, and myogenic differentiation. Annu. Rev. Physiol. 53:201–216.
  • Florini, J. R., D. Z. Ewton, K. A. Magri, and F. J. Mangiacapra. 1993. IGFs and muscle differentiation. Adv. Exp. Med. Biol. 343:319–326.
  • Gong, X., X. Tang, M. Wiedmann, X. Wang, J. Peng, D. Zheng, L. A. Blair, J. Marshall, and Z. Mao. 2003. Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron 38:33–46.
  • Grayson, J., R. Bassel-Duby, and R. S. Williams. 1998. Collaborative interactions between MEF-2 and Sp1 in muscle-specific gene regulation. J. Cell. Biochem. 70:366–375.
  • Gregoire, S., and X. J. Yang. 2005. Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors. Mol. Cell. Biol. 25:2273–2287.
  • Han, J., Y. Jiang, Z. Li, V. V. Kravchenko, and R. J. Ulevitch. 1997. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386:296–299.
  • Hanson, M. G., Jr., S. Shen, A. P. Wiemelt, F. A. McMorris, and B. A. Barres. 1998. Cyclic AMP elevation is sufficient to promote the survival of spinal motor neurons in vitro. J. Neurosci. 18:7361–7371.
  • Horikawa, M., S. Higashiyama, S. Nomura, Y. Kitamura, M. Ishikawa, and N. Taniguchi. 1999. Upregulation of endogenous heparin-binding EGF-like growth factor and its role as a survival factor in skeletal myotubes. FEBS Lett. 459:100–104.
  • Husmann, I., L. Soulet, J. Gautron, I. Martelly, and D. Barritault. 1996. Growth factors in skeletal muscle regeneration. Cytokine Growth Factor Rev. 7:249–258.
  • Jordan, M., A. Schallhorn, and F. M. Wurm. 1996. Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res. 24:596–601.
  • Kato, Y., V. V. Kravchenko, R. I. Tapping, J. Han, R. J. Ulevitch, and J. D. Lee. 1997. BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J. 16:7054–7066.
  • Lemercier, C., A. Verdel, B. Galloo, S. Curtet, M. P. Brocard, and S. Khochbin. 2000. mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity. J. Biol. Chem. 275:15594–15599.
  • Li, L., R. Heller-Harrison, M. Czech, and E. N. Olson. 1992. Cyclic AMP-dependent protein kinase inhibits the activity of myogenic helix-loop-helix proteins. Mol. Cell. Biol. 12:4478–4485.
  • Li, M., X. Wang, M. K. Meintzer, T. Laessig, M. J. Birnbaum, and K. A. Heidenreich. 2000. Cyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3beta. Mol. Cell. Biol. 20:9356–9363.
  • Lin, Q., J. Lu, H. Yanagisawa, R. Webb, G. E. Lyons, J. A. Richardson, and E. N. Olson. 1998. Requirement of the MADS-box transcription factor MEF2C for vascular development. Development 125:4565–4574.
  • Lin, Q., J. Schwarz, C. Bucana, and E. N. Olson. 1997. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276:1404–1407.
  • Linseman, D. A., C. M. Bartley, S. S. Le, T. A. Laessig, R. J. Bouchard, M. K. Meintzer, M. Li, and K. A. Heidenreich. 2003. Inactivation of the myocyte enhancer factor-2 repressor histone deacetylase-5 by endogenous Ca(2+)/calmodulin-dependent kinase II promotes depolarization-mediated cerebellar granule neuron survival. J. Biol. Chem. 278:41472–41481.
  • Lu, J., T. A. McKinsey, C. L. Zhang, and E. N. Olson. 2000. Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol. Cell 6:233–244.
  • Ludolph, D. C., and S. F. Konieczny. 1995. Transcription factor families: muscling in on the myogenic program. FASEB J. 9:1595–1604.
  • Ma, K., J. K. Chan, G. Zhu, and Z. Wu. 2005. Myocyte enhancer factor 2 acetylation by p300 enhances its DNA binding activity, transcriptional activity, and myogenic differentiation. Mol. Cell. Biol. 25:3575–3582.
  • Makarevich, A., A. Sirotkin, P. Chrenek, J. Bulla, and L. Hetenyi. 2000. The role of IGF-I, cAMP/protein kinase A and MAP-kinase in the control of steroid secretion, cyclic nucleotide production, granulosa cell proliferation and preimplantation embryo development in rabbits. J. Steroid Biochem. Mol. Biol. 73:123–133.
  • Mao, Z., A. Bonni, F. Xia, M. Nadal-Vicens, and M. E. Greenberg. 1999. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286:785–790.
  • Mao, Z., and M. Wiedmann. 1999. Calcineurin enhances MEF2 DNA binding activity in calcium-dependent survival of cerebellar granule neurons. J. Biol. Chem. 274:31102–31107.
  • Martin, J. F., J. M. Miano, C. M. Hustad, N. G. Copeland, N. A. Jenkins, and E. N. Olson. 1994. A Mef2 gene that generates a muscle-specific isoform via alternative mRNA splicing. Mol. Cell. Biol. 14:1647–1656.
  • Miska, E. A., C. Karlsson, E. Langley, S. J. Nielsen, J. Pines, and T. Kouzarides. 1999. HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J. 18:5099–5107.
  • Molkentin, J. D., B. L. Black, J. F. Martin, and E. N. Olson. 1995. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83:1125–1136.
  • Molkentin, J. D., B. L. Black, J. F. Martin, and E. N. Olson. 1996. Mutational analysis of the DNA binding, dimerization, and transcriptional activation domains of MEF2C. Mol. Cell. Biol. 16:2627–2636.
  • Molkentin, J. D., L. Li, and E. N. Olson. 1996. Phosphorylation of the MADS-box transcription factor MEF2C enhances its DNA binding activity. J. Biol. Chem. 271:17199–17204.
  • Molkentin, J. D., and E. N. Olson. 1996. Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc. Natl. Acad. Sci. USA 93:9366–9373.
  • Morin, S., F. Charron, L. Robitaille, and M. Nemer. 2000. GATA-dependent recruitment of MEF2 proteins to target promoters. EMBO J. 19:2046–2055.
  • Naya, F. J., and E. Olson. 1999. MEF2: a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation. Curr. Opin. Cell Biol. 11:683–688.
  • Naya, F. J., C. Wu, J. A. Richardson, P. Overbeek, and E. N. Olson. 1999. Transcriptional activity of MEF2 during mouse embryogenesis monitored with a MEF2-dependent transgene. Development 126:2045–2052.
  • Okamoto, S., D. Krainc, K. Sherman, and S. A. Lipton. 2000. Antiapoptotic role of the p38 mitogen-activated protein kinase-myocyte enhancer factor 2 transcription factor pathway during neuronal differentiation. Proc. Natl. Acad. Sci. USA 97:7561–7566.
  • Olson, E. N. 1990. MyoD family: a paradigm for development? Genes Dev. 4:1454–1461.
  • Ornatsky, O. I., J. J. Andreucci, and J. C. McDermott. 1997. A dominant-negative form of transcription factor MEF2 inhibits myogenesis. J. Biol. Chem. 272:33271–33278.
  • Ornatsky, O. I., D. M. Cox, P. Tangirala, J. J. Andreucci, Z. A. Quinn, J. L. Wrana, R. Prywes, Y. T. Yu, and J. C. McDermott. 1999. Post-translational control of the MEF2A transcriptional regulatory protein. Nucleic Acids Res. 27:2646–2654.
  • Ornatsky, O. I., and J. C. McDermott. 1996. MEF2 protein expression, DNA binding specificity and complex composition, and transcriptional activity in muscle and non-muscle cells. J. Biol. Chem. 271:24927–24933.
  • Ottens, A. K., F. H. Kobeissy, R. A. Wolper, W. E. Haskins, R. L. Hayes, N. D. Denslow, and K. K. Wang. 2005. A multidimensional differential proteomic platform using dual-phase ion-exchange chromatography-polyacrylamide gel electrophoresis/reversed-phase liquid chromatography tandem mass spectrometry. Anal. Chem. 77:4836–4845.
  • Park, S. Y., H. M. Shin, and T. H. Han. 2002. Synergistic interaction of MEF2D and Sp1 in activation of the CD14 promoter. Mol. Immunol. 39:25–30.
  • Pearson, G. W., S. Earnest, and M. H. Cobb. 2006. Cyclic AMP selectively uncouples mitogen-activated protein kinase cascades from activating signals. Mol. Cell. Biol. 26:3039–3047.
  • Pirskanen, A., J. C. Kiefer, and S. D. Hauschka. 2000. IGFs, insulin, Shh, bFGF, and TGF-beta1 interact synergistically to promote somite myogenesis in vitro. Dev. Biol. 224:189–203.
  • Pownall, M. E., M. K. Gustafsson, and C. P. Emerson, Jr. 2002. Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu. Rev. Cell Dev. Biol. 18:747–783.
  • Quinn, Z. A., C. C. Yang, J. L. Wrana, and J. C. McDermott. 2001. Smad proteins function as co-modulators for MEF2 transcriptional regulatory proteins. Nucleic Acids Res. 29:732–742.
  • Rydel, R. E., and L. A. Greene. 1988. cAMP analogs promote survival and neurite outgrowth in cultures of rat sympathetic and sensory neurons independently of nerve growth factor. Proc. Natl. Acad. Sci. USA 85:1257–1261.
  • Sartorelli, V., J. Huang, Y. Hamamori, and L. Kedes. 1997. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol. Cell. Biol. 17:1010–1026.
  • Seamon, K. B., and J. W. Daly. 1981. Forskolin: a unique diterpene activator of cyclic AMP-generating systems. J. Cyclic Nucleotide Res. 7:201–224.
  • Shore, P., and A. D. Sharrocks. 1995. The MADS-box family of transcription factors. Eur. J. Biochem. 229:1–13.
  • Sirotkin, A. V., and R. Grossmann. 2006. The role of protein kinase A and cyclin-dependent (CDC2) kinase in the control of basal and IGF-II-induced proliferation and secretory activity of chicken ovarian cells. Anim. Reprod. Sci. 92:169–181.
  • Sirotkin, A. V., P. Sanislo, H. J. Schaeffer, I. Florkovicova, J. Kotwica, J. Bulla, and L. Hetenyi. 2004. Thrombopoietin regulates proliferation, apoptosis, secretory activity and intracellular messengers in porcine ovarian follicular cells: involvement of protein kinase A. J. Endocrinol. 183:595–604.
  • Tajbakhsh, S., and G. Cossu. 1997. Establishing myogenic identity during somitogenesis. Curr. Opin. Genet. Dev. 7:634–641.
  • Tollefsen, S. E., R. Lajara, R. H. McCusker, D. R. Clemmons, and P. Rotwein. 1989. Insulin-like growth factors (IGF) in muscle development. Expression of IGF-I, the IGF-I receptor, and an IGF binding protein during myoblast differentiation. J. Biol. Chem. 264:13810–13817.
  • Vivarelli, E., W. E. Brown, R. G. Whalen, and G. Cossu. 1988. The expression of slow myosin during mammalian somitogenesis and limb bud differentiation. J. Cell Biol. 107:2191–2197.
  • Wang, X., X. Tang, M. Li, J. Marshall, and Z. Mao. 2005. Regulation of neuroprotective activity of myocyte-enhancer factor 2 by cAMP-protein kinase A signaling pathway in neuronal survival. J. Biol. Chem. 280:16705–16713.
  • Winter, B., T. Braun, and H. H. Arnold. 1993. cAMP-dependent protein kinase represses myogenic differentiation and the activity of the muscle-specific helix-loop-helix transcription factors Myf-5 and MyoD. J. Biol. Chem. 268:9869–9878.
  • Yamane, A., M. L. Mayo, P. Bringas, Jr., L. Chen, M. Huynh, K. Thai, L. Shum, and H. C. Slavkin. 1997. TGF-alpha, EGF, and their cognate EGF receptor are co-expressed with desmin during embryonic, fetal, and neonatal myogenesis in mouse tongue development. Dev. Dyn. 209:353–366.
  • Yang, C. C., O. I. Ornatsky, J. C. McDermott, T. F. Cruz, and C. A. Prody. 1998. Interaction of myocyte enhancer factor 2 (MEF2) with a mitogen-activated protein kinase, ERK5/BMK1. Nucleic Acids Res. 26:4771-4777.
  • Youn, H. D., L. Sun, R. Prywes, and J. O. Liu. 1999. Apoptosis of T cells mediated by Ca2+-induced release of the transcription factor MEF2. Science 286:790–793.
  • Yun, K., and B. Wold. 1996. Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Curr. Opin. Cell Biol. 8:877–889.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.