9
Views
33
CrossRef citations to date
0
Altmetric
Article

IQGAP1 Regulates Endothelial Barrier Function via EB1-Cortactin Cross Talk

, , , , &
Pages 3546-3558 | Received 18 Feb 2014, Accepted 04 Jul 2014, Published online: 20 Mar 2023

REFERENCES

  • Birukova AA, Alekseeva E, Mikaelyan A, Birukov KG. 2007. HGF attenuates thrombin-induced permeability in the human pulmonary endothelial cells by Tiam1-mediated activation of the Rac pathway and by Tiam1/Rac-dependent inhibition of the Rho pathway. FASEB J. 21:2776–2786. http://dx.doi.org/10.1096/fj.06-7660com.
  • Liu F, Schaphorst KL, Verin AD, Jacobs K, Birukova A, Day RM, Bogatcheva N, Bottaro DP, Garcia JG. 2002. Hepatocyte growth factor enhances endothelial cell barrier function and cortical cytoskeletal rearrangement: potential role of glycogen synthase kinase-3beta. FASEB J. 16:950–962. http://dx.doi.org/10.1096/fj.01-0870com.
  • Rosen EM, Goldberg ID. 1995. Scatter factor and angiogenesis. Adv. Cancer Res. 67:257–279. http://dx.doi.org/10.1016/S0065-230X(08)60715-0.
  • Zhang L, Himi T, Morita I, Murota S. 2000. Hepatocyte growth factor protects cultured rat cerebellar granule neurons from apoptosis via the phosphatidylinositol-3 kinase/Akt pathway. J. Neurosci. Res. 59:489–496. http://dx.doi.org/10.1002/(SICI)1097-4547(20000215)59:4<489::AID-JNR3>3.0.CO;2-9.
  • Ware LB, Matthay MA. 2002. Keratinocyte and hepatocyte growth factors in the lung: roles in lung development, inflammation, and repair. Am. J. Physiol. Lung Cell. Mol. Physiol. 282:L924–L940.
  • Date I, Takagi N, Takagi K, Kago T, Matsumoto K, Nakamura T, Takeo S. 2004. Hepatocyte growth factor attenuates cerebral ischemia-induced learning dysfunction. Biochem. Biophys. Res. Commun. 319:1152–1158. http://dx.doi.org/10.1016/j.bbrc.2004.05.100.
  • Singleton PA, Salgia R, Moreno-Vinasco L, Moitra J, Sammani S, Mirzapoiazova T, Garcia JG. 2007. CD44 regulates hepatocyte growth factor-mediated vascular integrity. Role of c-Met, Tiam1/Rac1, dynamin 2, and cortactin. J. Biol. Chem. 282:30643–30657. http://dx.doi.org/10.1074/jbc.M702573200.
  • Dudek SM, Garcia JG. 2001. Cytoskeletal regulation of pulmonary vascular permeability. J. Appl. Physiol. 91:1487–1500.
  • Birukov KG, Zebda N, Birukova AA. 2013. Barrier enhancing signals in pulmonary edema. Compr. Physiol. 3:429–484. http://dx.doi.org/10.1002/cphy.c100066.
  • Krendel M, Zenke FT, Bokoch GM. 2002. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat. Cell Biol. 4:294–301. http://dx.doi.org/10.1038/ncb773.
  • Birukova AA, Birukov KG, Adyshev D, Usatyuk P, Natarajan V, Garcia JG, Verin AD. 2005. Involvement of microtubules and Rho pathway in TGF-beta1-induced lung vascular barrier dysfunction. J. Cell. Physiol. 204:934–947. http://dx.doi.org/10.1002/jcp.20359.
  • Birukova AA, Fu P, Xing J, Yakubov B, Cokic I, Birukov KG. 2010. Mechanotransduction by GEF-H1 as a novel mechanism of ventilator-induced vascular endothelial permeability. Am. J. Physiol. Lung Cell. Mol. Physiol. 298:L837–L848. http://dx.doi.org/10.1152/ajplung.00263.2009.
  • Kratzer E, Tian Y, Sarich N, Wu T, Meliton A, Leff A, Birukova AA. 2012. Oxidative stress contributes to lung injury and barrier dysfunction via microtubule destabilization. Am. J. Respir. Cell Mol. Biol. 47:688–697. http://dx.doi.org/10.1165/rcmb.2012-0161OC.
  • Petrache I, Birukova A, Ramirez SI, Garcia JG, Verin AD. 2003. The role of the microtubules in tumor necrosis factor-alpha-induced endothelial cell permeability. Am. J. Respir. Cell Mol. Biol. 28:574–581. http://dx.doi.org/10.1165/rcmb.2002-0075OC.
  • Tian X, Tian Y, Sarich N, Wu T, Birukova AA. 2012. Novel role of stathmin in microtubule-dependent control of endothelial permeability. FASEB J. 26:3862–3874. http://dx.doi.org/10.1096/fj.12-207746.
  • Brown MD, Sacks DB. 2006. IQGAP1 in cellular signaling: bridging the GAP. Trends Cell Biol. 16:242–249. http://dx.doi.org/10.1016/j.tcb.2006.03.002.
  • Watanabe T, Noritake J, Kakeno M, Matsui T, Harada T, Wang S, Itoh N, Sato K, Matsuzawa K, Iwamatsu A, Galjart N, Kaibuchi K. 2009. Phosphorylation of CLASP2 by GSK-3beta regulates its interaction with IQGAP1, EB1 and microtubules. J. Cell Sci. 122:2969–2979. http://dx.doi.org/10.1242/jcs.046649.
  • White CD, Erdemir HH, Sacks DB. 2012. IQGAP1 and its binding proteins control diverse biological functions. Cell Signal. 24:826–834. http://dx.doi.org/10.1016/j.cellsig.2011.12.005.
  • Kaibuchi K, Kuroda S, Fukata M, Nakagawa M. 1999. Regulation of cadherin-mediated cell-cell adhesion by the Rho family GTPases. Curr. Opin. Cell Biol. 11:591–596. http://dx.doi.org/10.1016/S0955-0674(99)00014-9.
  • Noritake J, Watanabe T, Sato K, Wang S, Kaibuchi K. 2005. IQGAP1: a key regulator of adhesion and migration. J. Cell Sci. 118:2085–2092. http://dx.doi.org/10.1242/jcs.02379.
  • Swart-Mataraza JM, Li Z, Sacks DB. 2002. IQGAP1 is a component of Cdc42 signaling to the cytoskeleton. J. Biol. Chem. 277:24753–24763. http://dx.doi.org/10.1074/jbc.M111165200.
  • Singleton PA, Chatchavalvanich S, Fu P, Xing J, Birukova AA, Fortune JA, Klibanov AM, Garcia JG, Birukov KG. 2009. Akt-mediated transactivation of the S1P1 receptor in caveolin-enriched microdomains regulates endothelial barrier enhancement by oxidized phospholipids. Circ. Res. 104:978–986. http://dx.doi.org/10.1161/CIRCRESAHA.108.193367.
  • Briggs MW, Li Z, Sacks DB. 2002. IQGAP1-mediated stimulation of transcriptional co-activation by beta-catenin is modulated by calmodulin. J. Biol. Chem. 277:7453–7465. http://dx.doi.org/10.1074/jbc.M104315200.
  • Birukova AA, Birukov KG, Smurova K, Adyshev DM, Kaibuchi K, Alieva I, Garcia JG, Verin AD. 2004. Novel role of microtubules in thrombin-induced endothelial barrier dysfunction. FASEB J. 18:1879–1890. http://dx.doi.org/10.1096/fj.04-2328com.
  • Dubrovskyi O, Birukova AA, Birukov KG. 2013. Measurement of local permeability at subcellular level in cell models of agonist- and ventilator-induced lung injury. Lab. Invest. 93:254–263. http://dx.doi.org/10.1038/labinvest.2012.159.
  • Birukov KG, Bochkov VN, Birukova AA, Kawkitinarong K, Rios A, Leitner A, Verin AD, Bokoch GM, Leitinger N, Garcia JG. 2004. Epoxycyclopentenone-containing oxidized phospholipids restore endothelial barrier function via Cdc42 and Rac. Circ. Res. 95:892–901. http://dx.doi.org/10.1161/01.RES.0000147310.18962.06.
  • Birukova AA, Smurova K, Birukov KG, Kaibuchi K, Garcia JG, Verin AD. 2004. Role of Rho GTPases in thrombin-induced lung vascular endothelial cells barrier dysfunction. Microvasc. Res. 67:64–77. http://dx.doi.org/10.1016/j.mvr.2003.09.007.
  • Komarova Y, De Groot CO, Grigoriev I, Gouveia SM, Munteanu EL, Schober JM, Honnappa S, Buey RM, Hoogenraad CC, Dogterom M, Borisy GG, Steinmetz MO, Akhmanova A. 2009. Mammalian end binding proteins control persistent microtubule growth. J. Cell Biol. 184:691–706. http://dx.doi.org/10.1083/jcb.200807179.
  • Zebda N, Tian Y, Tian X, Gawlak G, Higginbotham K, Reynolds AB, Birukova AA, Birukov KG. 2013. Interaction of p190RhoGAP with C-terminal domain of p120-catenin modulates endothelial cytoskeleton and permeability. J. Biol. Chem. 288:18290–18299. http://dx.doi.org/10.1074/jbc.M112.432757.
  • Head JA, Jiang D, Li M, Zorn LJ, Schaefer EM, Parsons JT, Weed SA. 2003. Cortactin tyrosine phosphorylation requires Rac1 activity and association with the cortical actin cytoskeleton. Mol. Biol. Cell 14:3216–3229. http://dx.doi.org/10.1091/mbc.E02-11-0753.
  • Kakiashvili E, Speight P, Waheed F, Seth R, Lodyga M, Tanimura S, Kohno M, Rotstein OD, Kapus A, Szaszi K. 2009. GEF-H1 mediates tumor necrosis factor-alpha-induced Rho activation and myosin phosphorylation: role in the regulation of tubular paracellular permeability. J. Biol. Chem. 284:11454–11466. http://dx.doi.org/10.1074/jbc.M805933200.
  • Liu BP, Chrzanowska-Wodnicka M, Burridge K. 1998. Microtubule depolymerization induces stress fibers, focal adhesions, and DNA synthesis via the GTP-binding protein Rho. Cell Adhes. Commun. 5:249–255. http://dx.doi.org/10.3109/15419069809040295.
  • Zhang Q, Magnusson MK, Mosher DF. 1997. Lysophosphatidic acid and microtubule-destabilizing agents stimulate fibronectin matrix assembly through Rho-dependent actin stress fiber formation and cell contraction. Mol. Biol. Cell 8:1415–1425. http://dx.doi.org/10.1091/mbc.8.8.1415.
  • Fukata M, Watanabe T, Noritake J, Nakagawa M, Yamaga M, Kuroda S, Matsuura Y, Iwamatsu A, Perez F, Kaibuchi K. 2002. Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109:873–885. http://dx.doi.org/10.1016/S0092-8674(02)00800-0.
  • Benseñor LB, Kan HM, Wang N, Wallrabe H, Davidson LA, Cai Y, Schafer DA, Bloom GS. 2007. IQGAP1 regulates cell motility by linking growth factor signaling to actin assembly. J. Cell Sci. 120:658–669. http://dx.doi.org/10.1242/jcs.03376.
  • Le Clainche C, Schlaepfer D, Ferrari A, Klingauf M, Grohmanova K, Veligodskiy A, Didry D, Le D, Egile C, Carlier MF, Kroschewski R. 2007. IQGAP1 stimulates actin assembly through the N-WASP-Arp2/3 pathway. J. Biol. Chem. 282:426–435. http://dx.doi.org/10.1074/jbc.M607711200.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.