24
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Multi-BRCT Domain Protein Brc1 Links Rhp18/Rad18 and γH2A To Maintain Genome Stability during S Phase

, & ORCID Icon
Article: e00260-17 | Received 18 May 2017, Accepted 04 Aug 2017, Published online: 18 Mar 2023

REFERENCES

  • Tomasetti C, Li L, Vogelstein B. 2017. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 355:1330. https://doi.org/10.1126/science.aaf9011.
  • Tubbs A, Nussenzweig A. 2017. Endogenous DNA damage as a source of genomic instability in cancer. Cell 168:644–656. https://doi.org/10.1016/j.cell.2017.01.002.
  • Aguilera A, Garcia-Muse T. 2013. Causes of genome instability. Annu Rev Genet 47:1–32. https://doi.org/10.1146/annurev-genet-111212-133232.
  • Gadaleta MC, Noguchi E. 2017. Regulation of DNA replication through natural impediments in the eukaryotic genome. Genes 8:98. https://doi.org/10.3390/genes8030098.
  • Branzei D, Foiani M. 2009. The checkpoint response to replication stress. DNA Repair 8:1038–1046. https://doi.org/10.1016/j.dnarep.2009.04.014.
  • Cortez D. 2015. Preventing replication fork collapse to maintain genome integrity. DNA Repair 32:149–157. https://doi.org/10.1016/j.dnarep.2015.04.026.
  • Iyer DR, Rhind N. 2017. The intra-S checkpoint responses to DNA damage. Genes 8:74. https://doi.org/10.3390/genes8020074.
  • Branzei D, Foiani M. 2010. Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 11:208–219. https://doi.org/10.1038/nrm2852.
  • Rozenzhak S, Mejía-Ramírez E, Williams JS, Schaffer L, Hammond JA, Head SR, Russell P. 2010. Rad3ATR decorates critical chromosomal domains with γH2A to protect genome integrity during S-phase in fission yeast. PLoS Genet 6:e1001032. https://doi.org/10.1371/journal.pgen.1001032.
  • Mejia-Ramirez E, Limbo O, Langerak P, Russell P. 2015. Critical function of γH2A in S-phase. PLoS Genet 11:e1005517. https://doi.org/10.1371/journal.pgen.1005517.
  • Nakamura TM, Du L-L, Redon C, Russell P. 2004. Histone H2A Phosphorylation controls Crb2 recruitment at DNA breaks, maintains checkpoint arrest, and influences DNA repair in fission yeast. Mol Cell Biol 24:6215–6230. https://doi.org/10.1128/MCB.24.14.6215-6230.2004.
  • Williams JS, Williams RS, Dovey CL, Guenther G, Tainer JA, Russell P. 2010. γH2A binds Brc1 to maintain genome integrity during S-phase. EMBO J 29:1136–1148. https://doi.org/10.1038/emboj.2009.413.
  • Du LL, Nakamura TM, Russell P. 2006. Histone modification-dependent and -independent pathways for recruitment of checkpoint protein Crb2 to double-strand breaks. Genes Dev 20:1583–1596. https://doi.org/10.1101/gad.1422606.
  • Sofueva S, Du LL, Limbo O, Williams JS, Russell P. 2010. BRCT domain interactions with phospho-histone H2A target Crb2 to chromatin at double-strand breaks and maintain the DNA damage checkpoint. Mol Cell Biol 30:4732–4743. https://doi.org/10.1128/MCB.00413-10.
  • Wei Y, Wang HT, Zhai Y, Russell P, Du LL. 2014. Mdb1, a fission yeast homolog of human MDC1, modulates DNA damage response and mitotic spindle function. PLoS One 9:e97028. https://doi.org/10.1371/journal.pone.0097028.
  • Lee SY, Russell P. 2013. Brc1 links replication stress response and centromere function. Cell Cycle 12:1665–1671. https://doi.org/10.4161/cc.24900.
  • Hang LE, Peng J, Tan W, Szakal B, Menolfi D, Sheng Z, Lobachev K, Branzei D, Feng W, Zhao X. 2015. Rtt107 is a multifunctional scaffold supporting replication progression with partner SUMO and ubiquitin ligases. Mol Cell 60:268–279. https://doi.org/10.1016/j.molcel.2015.08.023.
  • Wan B, Hang LE, Zhao X. 2016. Multi-BRCT scaffolds use distinct strategies to support genome maintenance. Cell Cycle 15:2561–2570. https://doi.org/10.1080/15384101.2016.1218102.
  • Leung GP, Brown JA, Glover JN, Kobor MS. 2016. Rtt107 BRCT domains act as a targeting module in the DNA damage response. DNA Repair 37:22–32. https://doi.org/10.1016/j.dnarep.2015.10.007.
  • Balint A, Kim T, Gallo D, Cussiol JR, Bastos de Oliveira FM, Yimit A, Ou J, Nakato R, Gurevich A, Shirahige K, Smolka MB, Zhang Z, Brown GW. 2015. Assembly of Slx4 signaling complexes behind DNA replication forks. EMBO J 34:2182–2197. https://doi.org/10.15252/embj.201591190.
  • Ohouo PY, Bastos de Oliveira FM, Almeida BS, Smolka MB. 2010. DNA damage signaling recruits the Rtt107-Slx4 scaffolds via Dpb11 to mediate replication stress response. Mol Cell 39:300–306. https://doi.org/10.1016/j.molcel.2010.06.019.
  • Ray Chaudhuri A, Callen E, Ding X, Gogola E, Duarte AA, Lee JE, Wong N, Lafarga V, Calvo JA, Panzarino NJ, John S, Day A, Crespo AV, Shen B, Starnes LM, de Ruiter JR, Daniel JA, Konstantinopoulos PA, Cortez D, Cantor SB, Fernandez-Capetillo O, Ge K, Jonkers J, Rottenberg S, Sharan SK, Nussenzweig A. 2016. Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature 535:382–387. https://doi.org/10.1038/nature18325.
  • Verkade HM, Bugg SJ, Lindsay HD, Carr AM, O'Connell MJ. 1999. Rad18 is required for DNA repair and checkpoint responses in fission yeast. Mol Biol Cell 10:2905–2918. https://doi.org/10.1091/mbc.10.9.2905.
  • Sheedy DM, Dimitrova D, Rankin JK, Bass KL, Lee KM, Tapia-Alveal C, Harvey SH, Murray JM, O'Connell MJ. 2005. Brc1-mediated DNA repair and damage tolerance. Genetics 171:457–468. https://doi.org/10.1534/genetics.105.044966.
  • Bernstein KA, Gangloff S, Rothstein R. 2010. The RecQ DNA helicases in DNA repair. Annu Rev Genet 44:393–417. https://doi.org/10.1146/annurev-genet-102209-163602.
  • Sanchez A, Sharma S, Rozenzhak S, Roguev A, Krogan NJ, Chabes A, Russell P. 2012. Replication fork collapse and genome instability in a deoxycytidylate deaminase mutant. Mol Cell Biol 32:4445–4454. https://doi.org/10.1128/MCB.01062-12.
  • Pebernard S, McDonald WH, Pavlova Y, Yates JR, Boddy MN. 2004. Nse1, Nse2, and a novel subunit of the Smc5-Smc6 complex, Nse3, play a crucial role in meiosis. Mol Biol Cell 15:4866–4876. https://doi.org/10.1091/mbc.E04-05-0436.
  • Morikawa H, Morishita T, Kawane S, Iwasaki H, Carr AM, Shinagawa H. 2004. Rad62 protein functionally and physically associates with the Smc5/Smc6 protein complex and is required for chromosome integrity and recombination repair in fission yeast. Mol Cell Biol 24:9401–9413. https://doi.org/10.1128/MCB.24.21.9401-9413.2004.
  • Pebernard S, Wohlschlegel J, McDonald WH, Yates JR, Boddy MN. 2006. The Nse5-Nse6 dimer mediates DNA repair roles of the Smc5-Smc6 complex. Mol Cell Biol 26:1617–1630. https://doi.org/10.1128/MCB.26.5.1617-1630.2006.
  • Lee SY, Rozenzhak S, Russell P. 2013. γH2A-binding protein Brc1 affects centromere function in fission yeast. Mol Cell Biol 33:1410–1416. https://doi.org/10.1128/MCB.01654-12.
  • Lee KM, Nizza S, Hayes T, Bass KL, Irmisch A, Murray JM, O'Connell MJ. 2007. Brc1-mediated rescue of Smc5/6 deficiency: requirement for multiple nucleases and a novel Rad18 function. Genetics 175:1585–1595. https://doi.org/10.1534/genetics.106.067801.
  • Sánchez A, Roguev A, Krogan NJ, Russell P. 2015. Genetic interaction landscape reveals critical requirements for Schizosaccharomyces pombe Brc1 in DNA damage response mutants. G3 (Bethesda) 5:953–962. https://doi.org/10.1534/g3.115.017251.
  • Sánchez A, Russell P. 2015. Ku stabilizes replication rorks in the absence of Brc1. PLoS One 10:e0126598. https://doi.org/10.1371/journal.pone.0126598.
  • Gao Y, Mutter-Rottmayer E, Zlatanou A, Vaziri C, Yang Y. 2017. Mechanisms of postreplication DNA repair. Genes 8:64. https://doi.org/10.3390/genes8020064.
  • Leung CCY, Glover JNM. 2011. BRCT domains: Easy as one, two, three. Cell Cycle 10:2461–2470. https://doi.org/10.4161/cc.10.15.16312.
  • Reinhardt HC, Yaffe MB. 2013. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Nat Rev Mol Cell Biol 14:563–580. https://doi.org/10.1038/nrm3640.
  • Notenboom V, Hibbert RG, van Rossum-Fikkert SE, Olsen JV, Mann M, Sixma TK. 2007. Functional characterization of Rad18 domains for Rad6, ubiquitin, DNA binding and PCNA modification. Nucleic Acids Res 35:5819–5830. https://doi.org/10.1093/nar/gkm615.
  • Nakajima S, Lan L, Kanno S-i, Usami N, Kobayashi K, Mori M, Shiomi T, Yasui A. 2006. Replication-dependent and -independent responses of RAD18 to DNA damage in human cells. J Biol Chem 281:34687–34695. https://doi.org/10.1074/jbc.M605545200.
  • Huttner D, Ulrich HD. 2008. Cooperation of replication protein A with the ubiquitin ligase Rad18 in DNA damage bypass. Cell Cycle 7:3629–3633. https://doi.org/10.4161/cc.7.23.7166.
  • Davies AA, Huttner D, Daigaku Y, Chen S, Ulrich HD. 2008. Activation of ubiquitin-dependent DNA damage bypass Is mediated by replication protein A. Mol Cell 29:625–636. https://doi.org/10.1016/j.molcel.2007.12.016.
  • Froget B, Blaisonneau J, Lambert S, Baldacci G. 2008. Cleavage of stalled forks by fission yeast Mus81/Eme1 in absence of DNA replication checkpoint. Mol Biol Cell 19:445–456. https://doi.org/10.1091/mbc.E07-07-0728.
  • Roseaulin L, Yamada Y, Tsutsui Y, Russell P, Iwasaki H, Arcangioli B. 2008. Mus81 is essential for sister chromatid recombination at broken replication forks. EMBO J 27:1378–1387. https://doi.org/10.1038/emboj.2008.65.
  • Branzei D, Foiani M. 2008. Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 9:297–308. https://doi.org/10.1038/nrm2351.
  • Dou H, Huang C, Singh M, Carpenter PB, Yeh ETH. 2010. Regulation of DNA repair through de-SUMOylation and SUMOylation of replication protein A complex. Mol Cell 39:333–345. https://doi.org/10.1016/j.molcel.2010.07.021.
  • Heyer W-D, Ehmsen KT, Liu J. 2010. Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113–139. https://doi.org/10.1146/annurev-genet-051710-150955.
  • Li X, Heyer W-D. 2008. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18:99–113. https://doi.org/10.1038/cr.2008.1.
  • Bass KL, Murray JM, O'Connell MJ. 2012. Brc1-dependent recovery from replication stress. J Cell Sci 125:2753–2764. https://doi.org/10.1242/jcs.103119.
  • Raschle M, Smeenk G, Hansen RK, Temu T, Oka Y, Hein MY, Nagaraj N, Long DT, Walter JC, Hofmann K, Storchova Z, Cox J, Bekker-Jensen S, Mailand N, Mann M. 2015. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science 348:1253671. https://doi.org/10.1126/science.1253671.
  • Adams DJ, van der Weyden L, Gergely FV, Arends MJ, Ng BL, Tannahill D, Kanaar R, Markus A, Morris BJ, Bradley A. 2005. BRCTx is a novel, highly conserved RAD18-interacting protein. Mol Cell Biol 25:779–788. https://doi.org/10.1128/MCB.25.2.779-788.2005.
  • Liu T, Chen H, Kim H, Huen MS, Chen J, Huang J. 2012. RAD18-BRCTx interaction is required for efficient repair of UV-induced DNA damage. DNA Repair 11:131–138. https://doi.org/10.1016/j.dnarep.2011.10.012.
  • Leung GP, Lee L, Schmidt TI, Shirahige K, Kobor MS. 2011. Rtt107 is required for recruitment of the SMC5/6 complex to DNA double-strand breaks. J Biol Chem 286:26250–26257. https://doi.org/10.1074/jbc.M111.235200.
  • Forsburg SL, Rhind N. 2006. Basic methods for fission yeast. Yeast 23:173–183. https://doi.org/10.1002/yea.1347.
  • Bahler J, Wu JQ, Longtine MS, Shah NG, AMcKenzie 3rd, Steever AB, Wach A, Philippsen P, Pringle JR. 1998. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14:943–951. https://doi.org/10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.3.CO;2-P.
  • Tasto JJ, Carnahan RH, Hayes McDonald W, Gould KL. 2001. Vectors and gene targeting modules for tandem affinity purification in Schizosaccharomyces pombe. Yeast 18:657–662. https://doi.org/10.1002/yea.713.
  • Noguchi C, Garabedian MV, Malik M, Noguchi E. 2008. A vector system for genomic FLAG epitope-tagging in Schizosaccharomyces pombe. Biotechnol J 3:1280–1285. https://doi.org/10.1002/biot.200800140.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.