15
Views
8
CrossRef citations to date
0
Altmetric
Article

Smad7 Modulates Epidermal Growth Factor Receptor Turnover through Sequestration of c-Cbl

, , , , &
Pages 2841-2850 | Received 12 Mar 2015, Accepted 02 Jun 2015, Published online: 20 Mar 2023

REFERENCES

  • Derynck R, Akhurst RJ. 2007. Differentiation plasticity regulated by TGF-beta family proteins in development and disease. Nat Cell Biol 9:1000–1004. http://dx.doi.org/10.1038/ncb434.
  • Massagué J. 2008. TGFβ in Cancer Cell 134:215–230. http://dx.doi.org/10.1016/j.cell.2008.07.001.
  • Nakao A, Afrakhte M, Morén A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, ten Dijke P. 1997. Identification of Smad7, a TGF-β-inducible antagonist of TGF-β signalling. Nature 389:631–635. http://dx.doi.org/10.1038/39369.
  • Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K. 2001. Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem 276:12477–12480. http://dx.doi.org/10.1074/jbc.C100008200.
  • Zhang S, Fei T, Zhang L, Zhang R, Chen F, Ning Y, Han Y, Feng X-H, Meng A, Chen Y-G. 2007. Smad7 antagonizes transforming growth factor beta signaling in the nucleus by interfering with functional Smad-DNA complex formation. Mol Cell Biol 27:4488–4499. http://dx.doi.org/10.1128/MCB.01636-06.
  • Javelaud D, Mohammad KS, McKenna CR, Fournier P, Luciani F, Niewolna M, André J, Delmas V, Larue L, Guise TA, Mauviel A. 2007. Stable overexpression of Smad7 in human melanoma cells impairs bone metastasis. Cancer Res 67:2317–2324. http://dx.doi.org/10.1158/0008-5472.CAN-06-3950.
  • Kim YH, Lee HS, Lee H-J, Hur K, Kim WH, Bang Y-J, Kim S-J, Lee KU, Choe KJ, Yang H-K. 2004. Prognostic significance of the expression of Smad4 and Smad7 in human gastric carcinomas. Ann Oncol Off J Eur Soc Med Oncol ESMO 15:574–580. http://dx.doi.org/10.1093/annonc/mdh131.
  • Wang J, Zhao J, Chu ESH, Mok MTS, Go MYY, Man K, Heuchel R, Lan HY, Chang Z, Sung JJY, Yu J. 2013. Inhibitory role of Smad7 in hepatocarcinogenesis in mice and in vitro. J Pathol 230:441–452. http://dx.doi.org/10.1002/path.4206.
  • Liu X, Lee J, Cooley M, Bhogte E, Hartley S, Glick A. 2003. Smad7 but not Smad6 cooperates with oncogenic ras to cause malignant conversion in a mouse model for squamous cell carcinoma. Cancer Res 63:7760–7768.
  • Fry WHD, Kotelawala L, Sweeney C, Carraway KL. 2009. Mechanisms of ErbB receptor negative regulation and relevance in cancer. Exp Cell Res 315:697–706. http://dx.doi.org/10.1016/j.yexcr.2008.07.022.
  • Di Fiore PP, Gill GN. 1999. Endocytosis and mitogenic signaling. Curr Opin Cell Biol 11:483–488. http://dx.doi.org/10.1016/S0955-0674(99)80069-6.
  • de Melker AA, van der Horst G, Calafat J, Jansen H, Borst J. 2001. c-Cbl ubiquitinates the EGF receptor at the plasma membrane and remains receptor associated throughout the endocytic route. J Cell Sci 114:2167–2178.
  • Duan L, Miura Y, Dimri M, Majumder B, Dodge IL, Reddi AL, Ghosh A, Fernandes N, Zhou P, Mullane-Robinson K, Rao N, Donoghue S, Rogers RA, Bowtell D, Naramura M, Gu H, Band V, Band H. 2003. Cbl-mediated ubiquitinylation is required for lysosomal sorting of epidermal growth factor receptor but is dispensable for endocytosis. J Biol Chem 278:28950–28960. http://dx.doi.org/10.1074/jbc.M304474200.
  • Fukazawa T, Miyake S, Band V, Band H. 1996. Tyrosine phosphorylation of Cbl upon epidermal growth factor (EGF) stimulation and its association with EGF receptor and downstream signaling proteins. J Biol Chem 271:14554–14559. http://dx.doi.org/10.1074/jbc.271.24.14554.
  • Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC. 1999. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286:309–312. http://dx.doi.org/10.1126/science.286.5438.309.
  • Levkowitz G, Waterman H, Zamir E, Kam Z, Oved S, Langdon WY, Beguinot L, Geiger B, Yarden Y. 1998. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev 12:3663–3674. http://dx.doi.org/10.1101/gad.12.23.3663.
  • Fujikawa K, de Aos Scherpenseel I, Jain SK, Presman E, Christensen RA, Varticovski L. 1999. Role of PI 3-kinase in angiopoietin-1-mediated migration and attachment-dependent survival of endothelial cells. Exp Cell Res 253:663–672. http://dx.doi.org/10.1006/excr.1999.4693.
  • Yokouchi M, Kondo T, Houghton A, Bartkiewicz M, Horne WC, Zhang H, Yoshimura A, Baron R. 1999. Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7. J Biol Chem 274:31707–31712. http://dx.doi.org/10.1074/jbc.274.44.31707.
  • Lee YS, Park JS, Kim JH, Jung SM, Lee JY, Kim S-J, Park SH. 2011. Smad6-specific recruitment of Smurf E3 ligases mediates TGF-β1-induced degradation of MyD88 in TLR4 signalling. Nat Commun 2:460. http://dx.doi.org/10.1038/ncomms1469.
  • He W, Li AG, Wang D, Han S, Zheng B, Goumans M-J, ten Dijke P, Wang X-J. 2002. Overexpression of Smad7 results in severe pathological alterations in multiple epithelial tissues. EMBO J 21:2580–2590. http://dx.doi.org/10.1093/emboj/21.11.2580.
  • Hong S, Lim S, Li AG, Lee C, Lee YS, Lee E-K, Park SH, Wang X-J, Kim S-J. 2007. Smad7 binds to the adaptors TAB2 and TAB3 to block recruitment of the kinase TAK1 to the adaptor TRAF2. Nat Immunol 8:504–513. http://dx.doi.org/10.1038/ni1451.
  • Brand TM, Iida M, Li C, Wheeler DL. 2011. The nuclear epidermal growth factor receptor signaling network and its role in cancer. Discov Med 12:419–432.
  • Schlessinger J. 2002. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110:669–672. http://dx.doi.org/10.1016/S0092-8674(02)00966-2.
  • Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I, Lavi S, Iwai K, Reiss Y, Ciechanover A, Lipkowitz S, Yarden Y. 1999. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 4:1029–1040. http://dx.doi.org/10.1016/S1097-2765(00)80231-2.
  • Javadi M, Richmond TD, Huang K, Barber DL. 2013. CBL linker region and RING finger mutations lead to enhanced granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling via elevated levels of JAK2 and LYN. J Biol Chem 288:19459–19470. http://dx.doi.org/10.1074/jbc.M113.475087.
  • Martinelli S, De Luca A, Stellacci E, Rossi C, Checquolo S, Lepri F, Caputo V, Silvano M, Buscherini F, Consoli F, Ferrara G, Digilio MC, Cavaliere ML, van Hagen JM, Zampino G, van der Burgt I, Ferrero GB, Mazzanti L, Screpanti I, Yntema HG, Nillesen WM, Savarirayan R, Zenker M, Dallapiccola B, Gelb BD, Tartaglia M. 2010. Heterozygous germline mutations in the CBL tumor-suppressor gene cause a Noonan syndrome-like phenotype. Am J Hum Genet 87:250–257. http://dx.doi.org/10.1016/j.ajhg.2010.06.015.
  • Sanada M, Suzuki T, Shih L-Y, Otsu M, Kato M, Yamazaki S, Tamura A, Honda H, Sakata-Yanagimoto M, Kumano K, Oda H, Yamagata T, Takita J, Gotoh N, Nakazaki K, Kawamata N, Onodera M, Nobuyoshi M, Hayashi Y, Harada H, Kurokawa M, Chiba S, Mori H, Ozawa K, Omine M, Hirai H, Nakauchi H, Koeffler HP, Ogawa S. 2009. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature 460:904–908. http://dx.doi.org/10.1038/nature08240.
  • Lupher ML, Songyang Z, Shoelson SE, Cantley LC, Band H. 1997. The Cbl phosphotyrosine-binding domain selects a D(N/D)XpY motif and binds to the Tyr292 negative regulatory phosphorylation site of ZAP-70. J Biol Chem 272:33140–33144. http://dx.doi.org/10.1074/jbc.272.52.33140.
  • Xian W, Rosenberg MP, DiGiovanni J. 1997. Activation of erbB2 and c-src in phorbol ester-treated mouse epidermis: possible role in mouse skin tumor promotion. Oncogene 14:1435–1444. http://dx.doi.org/10.1038/sj.onc.1200980.
  • Rao N, Dodge I, Band H. 2002. The Cbl family of ubiquitin ligases: critical negative regulators of tyrosine kinase signaling in the immune system. J Leukoc Biol 71:753–763.
  • Margolis BL, Lax I, Kris R, Dombalagian M, Honegger AM, Howk R, Givol D, Ullrich A, Schlessinger J. 1989. All autophosphorylation sites of epidermal growth factor (EGF) receptor and HER2/neu are located in their carboxyl-terminal tails. Identification of a novel site in EGF receptor. J Biol Chem 264:10667–10671.
  • Grøvdal LM, Stang E, Sorkin A, Madshus IH. 2004. Direct interaction of Cbl with pTyr 1045 of the EGF receptor (EGFR) is required to sort the EGFR to lysosomes for degradation. Exp Cell Res 300:388–395. http://dx.doi.org/10.1016/j.yexcr.2004.07.003.
  • Swaminathan G, Tsygankov AY. 2006. The Cbl family proteins: ring leaders in regulation of cell signaling. J Cell Physiol 209:21–43. http://dx.doi.org/10.1002/jcp.20694.
  • Thien CBF, Langdon WY. 2005. Negative regulation of PTK signalling by Cbl proteins. Growth Factors Chur Switz 23:161–167. http://dx.doi.org/10.1080/08977190500153763.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.